106 research outputs found

    Integrating Groundwater Observations with Models of Soil-Water Dynamics to Examine Recharge Patterns through Glacial Sediments in a Humid Continental Climate

    Get PDF
    Poster presented at American Geophysical Union meeting in 2015.Understanding the timing and magnitude of shallow groundwater recharge is critical for determining water balance and analyzing aquifer sensitivity for water resource planning. We analyzed data from six hydrometeorological monitoring stations using HYDRUS 1D to achieve physically based estimates of water-table recharge in various glaciated terrains in Indiana (USA). The models simulated runoff, root-water uptake, and flow through heterogeneous soil profiles to quantify water flux at the water table. Calibration by inverse modeling of data collected in 2013 yielded optimized hydraulic parameters that allowed accurate simulation of observed soil moisture (RMSE generally within 3%). The model validation period confirmed accurate simulation of soil moisture as well as correspondence between modeled recharge and observed water-table fluctuations. Additional modelling over a three-year study period indicated that diffuse water-table recharge in the region can be reasonably approximated as 35% of precipitation, but interannual and monthly variability can be significant depending on the glacial setting and pedological development. Soil parent material and horizon characteristics have a strong influence on average annual recharge primarily through their control on Ks, with clay-rich till parent materials producing values as low as 16% and coarse-grained outwash parent materials producing values as high as 58% of precipitation. The combined modelling and monitoring data reveal distinct seasonality of recharge, with most recharge occurring in the winter (seasonal mean of all sites was 66% of precipitation) and lesser but interannually stable amounts in the spring (44%), summer (13%), and autumn (16%). This ongoing research underscores the value of combining vadose zone characterization with hydrometeorological monitoring to more effectively represent how surface energy and moisture budgets influence the dynamics of surface water-groundwater interactions

    ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer

    Get PDF
    We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance

    Mouse Chromosome 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd

    Prospective observational cohort study of the association between antiplatelet therapy, bleeding and thrombosis in patients with coronary stents undergoing noncardiac surgery

    Get PDF
    Background: The perioperative management of antiplatelet therapy in noncardiac surgery patients who have undergone previous percutaneous coronary intervention (PCI) remains a dilemma. Continuing dual antiplatelet therapy (DAPT) may carry a risk of bleeding, while stopping antiplatelet therapy may increase the risk of perioperative major adverse cardiovascular events (MACE). Methods: Occurrence of Bleeding and Thrombosis during Antiplatelet Therapy In Non-Cardiac Surgery (OBTAIN) was an international prospective multicentre cohort study of perioperative antiplatelet treatment, MACE, and serious bleeding in noncardiac surgery. The incidences of MACE and bleeding were compared in patients receiving DAPT, monotherapy, and no antiplatelet therapy before surgery. Unadjusted risk ratios were calculated taking monotherapy as the baseline. The adjusted risks of bleeding and MACE were compared in patients receiving monotherapy and DAPT using propensity score matching. Results: A total of 917 patients were recruited and 847 were eligible for inclusion. Ninety-six patients received no antiplatelet therapy, 526 received monotherapy with aspirin, and 225 received DAPT. Thirty-two patients suffered MACE and 22 had bleeding. The unadjusted risk ratio for MACE in patients receiving DAPT compared with monotherapy was 1.9 (0.93–3.88), P=0.08. There was no difference in MACE between no antiplatelet treatment and monotherapy 1.03 (0.31–3.46), P=0.96. Bleeding was more frequent with DAPT 6.55 (2.3–17.96) P=0.0002. In a propensity matched analysis of 177 patients who received DAPT and 177 monotherapy patients, the risk ratio for MACE with DAPT was 1.83 (0.69–4.85), P=0.32. The risk of bleeding was significantly greater in the DAPT group 4.00 (1.15–13.93), P=0.031. Conclusions: OBTAIN showed an increased risk of bleeding with DAPT and found no evidence for protective effects of DAPT from perioperative MACE in patients who have undergone previous PCI
    • …
    corecore