27 research outputs found

    Temperature dependence of volume and surface symmetry energy coefficients of nuclei

    Get PDF
    AbstractThe thermal evolution of the energies and free energies of a set of spherical and near-spherical nuclei spanning the whole periodic table are calculated in the subtracted finite-temperature Thomas–Fermi framework with the zero-range Skyrme-type KDE0 and the finite-range modified Seyler–Blanchard interaction. The calculated energies are subjected to a global fit in the spirit of the liquid-drop model. The extracted parameters in this model reflect the temperature dependence of the volume symmetry and surface symmetry coefficients of finite nuclei, in addition to that of the volume and surface energy coefficients. The temperature dependence of the surface symmetry energy is found to be very substantial whereas that of the volume symmetry energy turns out to be comparatively mild

    Liquid-gas phase transition in finite nuclei

    Full text link
    In a finite temperature Thomas-Fermi framework, we calculate density distributions of hot nuclei enclosed in a freeze-out volume of few times the normal nuclear volume and then construct the caloric curve, with and without inclusion of radial collective flow. In both cases, the calculated specific heats CvC_v show a peaked structure signalling a liquid-gas phase transition. Without flow, the caloric curve indicates a continuous phase transition whereas with inclusion of flow, the transition is very sharp. In the latter case, the nucleus undergoes a shape change to a bubble from a diffuse sphere at the transition temperature.Comment: Proc. of 6th Int. Conf. on N-N Collisions (Gatlinburg); Nuclear Physics A (in press

    Nuclear expansion with excitation

    Get PDF
    The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM* force as the nuclear effective two-body interaction. The calculated results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of 9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of 4 MeV/uComment: 17 pages, 5 figures, revtex4; calculations with deformation adde

    Spin polarised nuclear matter and its application to neutron stars

    Get PDF
    An equation of state(EOS) of nuclear matter with explicit inclusion of a spin-isospin dependent force is constructed from a finite range, momentum and density dependent effective interaction. This EOS is found to be in good agreement with those obtained from more sophisticated models for unpolarised nuclear matter. Introducing spin degrees of freedom, it is found that at density about 2.5 times the density of normal nuclear matter the neutron matter undergoes a ferromagnetic transition. The maximum mass and the radius of the neutron star agree favourably with the observations. Since finding quark matter rather than spin polarised nuclear matter at the core of neutron stars is more probable, the proposed EOS is also applied to the study of hybrid stars. It is found using the bag model picture that one can in principle describe both the mass and size as well as the surface magnetic field of hybrid stars satisfactorily.Comment: 26 pages, 11 figures available on reques

    Isospin influences on particle emission and critical phenomenon in nuclear dissociation

    Full text link
    Features of particle emission and critical point behavior are investigated as functions of the isospin of disassembling sources and temperature at a moderate freeze-out density for medium-size Xe isotopes in the framework of isospin dependent lattice gas model. Multiplicities of emitted light particles, isotopic and isobaric ratios of light particles show the strong dependence on the isospin of the dissociation source, but double ratios of light isotope pairs and the critical temperature determined by the extreme values of some critical observables are insensitive to the isospin of the systems. Values of the power law parameter of cluster mass distribution, mean multiplicity of intermediate mass fragments (IMFIMF), information entropy (HH) and Campi's second moment (S2S_2) also show a minor dependence on the isospin of Xe isotopes at the critical point. In addition, the slopes of the average multiplicites of the neutrons (NnN_n), protons (NpN_p), charged particles (NCPN_{CP}), and IMFs (NimfN_{imf}), slopes of the largest fragment mass number (AmaxA_{max}), and the excitation energy per nucleon of the disassembling source (E∗/AE^*/A) to temperature are investigated as well as variances of the distributions of NnN_n, NpN_p, NCPN_{CP}, NIMFN_{IMF}, AmaxA_{max} and E∗/AE^*/A. It is found that they can be taken as additional judgements to the critical phenomena.Comment: 9 Pages, 8 figure

    Overview of the JET results in support to ITER

    Get PDF

    Application of the Ising model to the study of cluster multiplicities in finite excited systems

    No full text
    The political debat around the Iraqi war was not engaged only at the level of international organisations, such as NATO or UNO, but also in cyberspace. This debate does not reproduce the one that involves the traditional media. The semiotic analysis of the virtual discourses shows that these are developed according to a specific rhetorics. As soon as the papers published some fragments from e-mails and web-postings, the difference became obvious. Moreover, the objection against the public character of the virtual discourse is meaningful, as it points to the fact that the cyber-people themselves doubt the legitimacy of their own discourses. The case-study shows how cyber-self-awareness that emerges from cyber-practices is coupled to a self-cyber-awareness

    NON-EQUILIBRIUM NUCLEON EMISSION AROUND THE FERMI ENERGY REGION

    No full text
    Emission of fast energetic nucleons in intermediate energy nuclear collisions is investigated in the framework of two specific non-equilibrium models. In the lower energy region considered, the Fermi Jet mechanism dominates whereas results in the higher energy region are suggestive of emission from a hot dense source formed inside cold nuclear matter
    corecore