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The thermal evolution of the energies and free energies of a set of spherical and near-spherical
nuclei spanning the whole periodic table are calculated in the subtracted finite-temperature Thomas–
Fermi framework with the zero-range Skyrme-type KDE0 and the finite-range modified Seyler–Blanchard
interaction. The calculated energies are subjected to a global fit in the spirit of the liquid-drop model.
The extracted parameters in this model reflect the temperature dependence of the volume symmetry
and surface symmetry coefficients of finite nuclei, in addition to that of the volume and surface energy
coefficients. The temperature dependence of the surface symmetry energy is found to be very substantial
whereas that of the volume symmetry energy turns out to be comparatively mild.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
The symmetry energy coefficient av
sym of infinite nuclear matter

is conventionally defined by the relation e(X) = e(X = 0)+av
sym X2.

Here e is the energy per nucleon of the system at isospin asym-
metry X = (ρn − ρp)/(ρn + ρp), ρn and ρp being the neutron and
proton densities, respectively of the system. For homogeneous nu-
clear matter, this definition works extremely well, e(X) is seen
to be bilinear in X for nearly all values of asymmetry [1,2]. For
warm nuclear matter, the symmetry free energy coefficient f v

sym is

likewise obtained from f (X, T ) − f (X = 0, T ) = f v
sym(T )X2, where

f (X, T ) is the per-nucleon free energy of the matter at asymmetry
X and temperature T . These asymmetry coefficients are measures
of the energy or free energy release in converting asymmetric nu-
clear system to a symmetric one. For infinite nuclear systems at
saturation density ρ0 and temperature T = 0, the value of av

sym is
usually taken in the range of ∼ 30–34 MeV [3–5].

In the global fitting of the nuclear masses in the framework of
the liquid-drop mass formula, the symmetry coefficient asym enters
as a phenomenological parameter. Nuclei being finite systems, it is
realized that varying density profiles of different nuclei necessitate
introduction of a mass-dependent surface component in asym(A) in
addition to the mass-independent volume component av

sym . In the
literature, two different definitions have been used for asym(A). The
first, hereafter referred to as I [4] is,
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asym(A) = av
sym

1 + av
sym
βE

A−1/3
(1)

and the second, hereafter referred to as II [6] is,

asym(A) = av
sym − as

sym A−1/3. (2)

In definition I, βE is a measure of the surface symmetry energy,
as

sym is the surface symmetry energy coefficient in definition II. In

the limit of very large A, (av
sym)2/βE ∼ as

sym . The phenomenological
value of as

sym is taken as ∼ 45 MeV [5–7] and that of av
sym/βE is in

the close range of ∼ 2.4 ± 0.4 [4,8,9].
It is evident that the symmetry energy coefficient has an ex-

tremely important role in describing properly the nuclear binding
energies along the periodic table and in getting a broad under-
standing of the nuclear drip lines. It also plays a seminal role in
guiding the dynamical evolution of the core collapse of a massive
star and the associated explosive nucleosynthesis. A large (small)
magnitude of asym inhibits (accelerates) change of protons to neu-
trons through electron capture [10,11]. This change in isospin
asymmetry has its import in the nuclear equation of state (EOS)
and thus on the dynamics of the collapse and explosive phase of a
massive star. Matter in that phase is warm, it is therefore essential
to know with precision the thermal dependence of the symme-
try coefficients. Furthermore, in this collapse or bounce phase, the
nuclear matter is inhomogeneous; it nucleates to clusters of differ-
ent sizes. Knowledge about the thermal evolution of the symmetry
coefficients of finite nuclei then becomes a matter of central im-
portance.
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Table 1
The parameters of the KDE0 effective interaction.

t0 (MeV fm3) t1 (MeV fm5) t2 (MeV fm3(1+α)) t3 x0 x1 x2 x3 w0 (MeV fm5) α

−2526.52 430.94 −398.38 14235.52 0.7583 −0.3087 −0.9495 1.1445 128.95 0.1676
In the low temperature domain (T � 2 MeV), calculations of the
symmetry coefficients of atomic nuclei have been done earlier by
Donati et al. [12] in a schematic model. The motion of the nucle-
ons in a fluctuating mean-field results in a nucleon effective mass
that carry signatures of nonlocality in space (the k-mass mk) and
also nonlocality in time (the energy-mass mω). The energy mass
mω is seen to decrease with temperature [13,14], this brings in a
decreased density of states and thus an increase in the symmetry
coefficient. Calculations in this limited temperature range have fur-
ther been done by Dean et al. [15] in a shell model Monte Carlo
framework. It provides qualitative support to these earlier find-
ings. The symmetry coefficients, however, are found to be much
below the nominally accepted values. Evaluation of the tempera-
ture dependence of the volume and surface symmetry coefficients
of nuclei have also recently been attempted by Lee and Mekjian
[16] in a density functional theoretic approach. These calculations
are also limited to low temperatures (T � 3 MeV); the approxi-
mations employed here keep the results meaningful in this small
temperature domain.

Exploring the thermal evolution of the symmetry coefficients
of specific atomic masses has been attempted [17] in a broader
temperature range (T � 8 MeV) more recently. The energies
and free energies of the hot nuclei are calculated in the finite-
temperature Thomas–Fermi framework (FTTF) with the subtraction
technique [18] with suitable choice of effective interactions. Dy-
namical changes in the energy-mass mω are taken care of. For a
nucleus of mass A, the symmetry coefficient is defined as

asym(A, T ) = [
en(A, X1, T ) − en(A, X2, T )

]
/
(

X2
1 − X2

2

)
. (3)

Here en ’s are the nuclear part of the energy per nucleon of the nu-
clear pair of mass A but having different charges and X1 and X2
are the asymmetry parameters of the nuclei. For a finite nucleus
with Z protons and N neutrons, X is defined as (N − Z)/A. Similar
to asym(A, T ), the symmetry free energy coefficient fsym(A, T ) can
be defined. These definitions suffer from the fact that unique val-
ues of asym or fsym for a nucleus of mass A cannot be prescribed;
the values depend on the choice of the isospin asymmetric nuclear
pair.

The present communication is aimed to arrive at unambiguous
values of the temperature dependence of the symmetry coeffi-
cients. For a set (sixty nine) of spherical and non-spherical nuclei
covering almost the entire periodic table (we take 36 � A � 218
and 14 � Z � 92, the list of the nuclei is taken from Ref. [19]), the
energies and free energies are calculated in the subtracted FTTF
procedure, taking into account the dressing of the nucleon mass
to energy-mass mω that arises from the coupling of the nucle-
onic motion with the surface vibrations [13,14,20]. Two effective
interactions are chosen, i) the zero-range Skyrme-type interaction
KDE0 [21] and ii) the finite-range modified Seyler–Blanchard (SBM)
interaction. The KDE0 interaction reproduces the binding energies
of many nuclei ranging from normal to exotic ones with a devia-
tion which is much less than 0.5% for most cases. In addition, it
has been extremely successful in reproducing the breathing mode
energies of many nuclei, their charge radii and spin–orbit split-
ting. The SBM interaction also has been very successfully applied
in getting properly the ground state binding energies [22], charge
rms radii, giant monopole resonance energies etc. [23,24]. The SBM
interaction is given by
Table 2
The parameters of the SBM effective interaction (in MeV fm units).

Cl Cu a b d κ

348.5 829.7 0.6251 927.5 0.879 1/6

veff (r, p,ρ) = Cl,u
[
v1(r, p) + v2(r,ρ)

]
,

v1 = −(
1 − p2/b2) f (r1, r2),

v2 = d2[ρ(r1) + ρ(r2)
]κ

f (r1, r2), (4)

with

f (r1, r2) = e−|r1−r2|/a

|r1 − r2|/a
. (5)

The strength parameters Cl for like pairs (n–n, p–p) and Cu for
unlike pairs (n–p) carry information on the isospin dependence in
the interaction. The densities at the sites r1 and r2 of the two in-
teracting nucleons with momenta p1 and p2 are given by ρ(r1)

and ρ(r2); r = |r1 − r2| and p = |p1 − p2|. The range of the inter-
action is a; b and d are measures of the momentum and density
dependence in the interaction and κ controls the stiffness on the
nuclear EOS. The procedures for determining these parameters are
given in detail in Refs. [24,25]. The parameters for KDE0 and SBM
interaction are listed in Table 1 and 2, respectively. The values of
the saturation density ρs , the volume energy, the isoscalar volume
incompressibility K∞ , the volume symmetry coefficient av

sym , the
symmetry incompressibility Ksym , the symmetry pressure L and
the critical temperature Tc for these two interactions are listed in
Table 3. It is worthwhile to note that the values of the symmetry
coefficients av

sym , Ksym and L lie in the range suggested by the em-
pirical constraints emerging out of the analyses of different recent
experimental data [26–29]. The method for obtaining the density
profiles of hot nuclei and their binding energies in the subtracted
FTTF approach, with subsequent modification due to energy-mass
with the SBM and Skyrme-type interaction has been described in
some good detail in a recent article [17]; we therefore do not re-
peat it here. The energies and free energies of the chosen sixty
nine nuclei are calculated with this prescription in a temperature
grid. At a particular temperature, the energies are then fitted in
the framework of the Bethe–Weizäcker mass formula

E(N, Z , T ) = av(T )A + as(T )A2/3 + ac
Z 2

A1/3

+ asym(A, T )X2 A, (6)

F (N, Z , T ) = f v(T )A + f s(T )A2/3 + ac
Z 2

A1/3

+ fsym(A, T )X2 A. (7)

In Eq. (6), av , as , ac and asym are the volume, surface, Coulomb
and symmetry energy coefficients. Similarly, f v , f s and fsym are
the corresponding free energy coefficients. The Coulomb energy
has an implicit temperature dependence; it does not contribute to
entropy. Since they are precisely known in a calculation, we try to
make a four-parameter fit with only the nuclear part of the ener-
gies and free energies,

En(N, Z , T ) = av(T )A + as(T )A2/3 + asym(A, T )X2 A, (8)

Fn(N, Z , T ) = f v(T )A + f s(T )A2/3 + fsym(A, T )X2 A. (9)
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Fig. 1. (Color online.) The volume energy and volume free energy coefficients shown
as a function of temperature in the left panels (a) and (b). The full and dashed
lines correspond to parametrization I and II, respectively. The blue color refers to
the KDE0 interaction, the red color refers to SBM. In the right panels (c) and (d),
the thermal dependence of surface energy and surface free energy is shown.

Here En and Fn are the nuclear part of the energy and free energy
of the nucleus; asym(A, T ) is given by Eq. (1) or Eq. (2). In a similar
spirit, fsym(A, T ) is written as

fsym(A, T ) = f v
sym(T )

1 + f v
sym(T )

βF (T )
A−1/3

(10)

or

fsym(A, T ) = f v
sym(T ) − f s

sym(T )A−1/3. (11)

The four-parameter set f v , f s , f v
sym and f s

sym (or βF ) has the same
connotation as the set av , as , av

sym and as
sym (or βE ), except that

the former set refers to free energy. The parametric values of the
volume energy av and the volume symmetry free energy f v are
shown as a function of temperature in panels (a) and (b) of Fig. 1.
At T = 0, av (or f v ) very closely reproduces the energy per nu-
cleon of symmetric nuclear matter. At low temperatures, av and f v

are nearly independent of the interactions chosen, at higher tem-
peratures, a slight dependence is observed. For a particular inter-
action, these values, however, do not show any significant depen-
dence on the chosen set I or II. Both av and f v are seen to change
quadratically with temperature. They are very well approximated
with av(T ) = e(T = 0) + T 2/K1 and f v (T ) = f v(T = 0) − T 2/K2,
with K1 ∼ 15.5 MeV and K2 ∼ 24.0 MeV. It is to be noted that
for infinite matter at a particular density and temperature, the
energy and free energy are canonically related (the entropy S =
−(∂ F/∂T )ρ , whence K1 = K2); in the present case, density is a
varying profile, also av(T ) and f v (T ) are obtained from a least-
squares fit to the energies of a multitude of nuclei. This may ex-
plain the different values of K1 and K2.

In the right panels (c) and (d) of Fig. 1, the thermal evolu-
tion of surface energy and the surface free energy coefficients are
shown. The surface energy (upper panel) increases slowly with
temperature; with the KDE0 interaction, a slight fall at very high
temperatures is, however, observed. With temperature, the surface
free energy (lower panel) decreases. In the literature [30,31], differ-
ent parametric forms for the dependence of surface free energy on
Table 3
Some bulk properties for infinite nuclear matter at the saturation density for the
KDE0 and SBM effective interactions. The values of saturation density are in fm−3

and all other quantities are in MeV.

Force ρs av K∞ Ksym av
sym L Tc

KDE0 0.161 −16.1 229 −144 33 45.2 14.7
SBM 0.154 −16.1 238 −101 31 59.8 14.9

Fig. 2. (Color online.) The volume symmetry energy and the volume symmetry free
energy coefficients plotted as a function of temperature. The lines and the colors
have the same meaning as in Fig. 1.

temperature have been used. We find that the form of the type
f s = f s(T = 0)[(T 2

c − T 2)/(T 2
c + T 2)]α used in Ref. [31] gives a

reasonably good fit with our calculated values for both the inter-
actions using both the parameter set I and II with α ∼ 0.95.

In Fig. 2, the evolution of the volume symmetry energy av
sym

and the volume symmetry free energy f v
sym coefficients with tem-

perature are displayed in panels (a) and (b), respectively. The be-
havior of av

sym depends on how asym(A) is defined. In definition I,
it falls with temperature, in definition II, it shows a slow increase.
The nature of the fall of av

sym (in I) or its increase (in II) is nearly
the same for both the interactions. The coefficient f v

sym , however,
shows nearly no dependence on temperature for both the interac-
tions and in both definitions.

In the left panels of Fig. 3, the thermal dependence of the co-
efficients βE and βF as used in Eqs. (1) and (10) in the definition I
of asym(A) and fsym(A) is shown. At T = 0, the value of βE or βF

is 12.1 and 13.9 MeV for the SBM and KDE0 interactions, respec-
tively; they compare well with the value of ∼ 13 MeV obtained
from analyses of the ‘experimental’ symmetry energies of isobaric
nuclei [9]. With temperature, βE decreases for both the interac-
tions; βF shows a nominal increase. We have, however, noticed
that both av

sym/βE and f v
sym/βF are nearly temperature indepen-

dent, lying in the range of ∼ 2.64 ± 0.01.
The temperature-dependent surface symmetry coefficients as

sym
and f s

sym as used in Eqs. (2) and (11) in the definition II are
shown in the right panels of Fig. 3. At T = 0, as

sym is 44.8 MeV
and 39.2 MeV for the KDE0 and SBM interactions, respectively,
close to the phenomenological value of ∼ 45 MeV [6]. With tem-
perature, for both the interactions, as

sym increases sharply showing
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Fig. 3. (Color online.) The thermal dependence of the coefficients βE and βF (from
parametrization I) is displayed in panels (a) and (b). The thermal evolution of the
surface symmetry coefficients as

sym and f s
sym (from parametrization II) is shown in

the right panels (c) and (d). The blue and red lines in both the left and right panels
refer to calculations with the KDE0 and SBM interactions, respectively.

Fig. 4. (Color online.) The symmetry coefficients asym(A) and fsym(A) shown as a
function of mass number for three temperatures. The full and dashed lines refer to
parametrization I and II. The black, blue and red lines correspond to T = 0, 4, and
8 MeV, respectively.

the growing importance of the surface term in asym(A). The sur-
face free energy coefficient f s

sym , however, displays a slow decrease
with temperature for the KDE0 interaction. As for the SBM inter-
action, f s

sym is nearly temperature-independent.
A comparison with calculations in Ref. [16] may now be in or-

der. In both calculations, the surface symmetry coefficient seems
to be more sensitive to temperature compared to the volume sym-
metry coefficient. However, in Ref. [16], in the limited temperature
Fig. 5. (Color online.) The thermal dependence of the symmetry coefficients of nuclei
shown for three mass number. The full and dashed lines refer to parametrization I
and II. The black, blue and red lines correspond to A = 60, 140 and 220, respec-
tively.

range they explore, the temperature dependence of the surface co-
efficients seem to be more pronounced than those seen in the
present calculation. There are subtle differences too, the lack of
self-consistency of the density profiles used in [16] along with
the low-temperature, high-density approximations involved may
be the reason behind these differences.

In Fig. 4, the mass dependence of the asym(A) and fsym(A) is
shown at three temperatures, T = 0, 4 and 8 MeV. Panels (a) and
(b) in the figure display asym(A) for KDE0 and SBM interactions,
respectively; panels (c) and (d) display fsym(A). The full lines cor-
respond to definition I for the symmetry coefficients, the dashed
lines do the same for definition II. The general findings are: for
a particular mass number, asym(A) decreases with temperature,
fsym(A) increases. At fixed temperature, asym(A) and fsym(A) in-
crease with A; this follows from the definitions. The values of
fsym(A) seem to depend little on the parametrization I or II; simi-
lar is the case for asym(A) except at very high temperature.

For the fixed values of nuclear masses, the temperature depen-
dence of asym(A) and fsym(A) are exhibited in Fig. 5. The masses
chosen are A = 60, 140 and 220. Panels (a) and (b) in this figure
display asym(A) for KDE0 and SBM interactions, respectively; pan-
els (c) and (d) do the same for fsym(A). The black lines pertain
to A = 60, the blue lines to A = 140 and the red lines corre-
spond to A = 220. The general findings in Fig. 4 that asym(A) falls
and fsym(A) shows a very slow increase with temperature is rein-
forced from this figure. For the SBM interaction, a near constancy
of fsym(A) with a slight dip in the middle of the temperature range
is seen. This was also occasionally observed earlier [23] with a dif-
ferent definition of fsym(A) — in the spirit of Eq. (3). It is also
observed that for a chosen interaction, both parametrization I and
II yield nearly the same value of the symmetry coefficients except
for A = 60 at higher temperatures.

To summarize, in a liquid-drop-model-inspired fit of the to-
tal energies and free energies of a system of nuclei evaluated
in a subtraction-implemented finite temperature Thomas–Fermi
framework, the temperature dependence of the symmetry energy
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coefficients of nuclei have been evaluated in this communication.
Two different energy density functionals, one with the zero-range
Skyrme-type KDE0 and the other with a finite-range SBM interac-
tion have been employed for this purpose. The general behavior of
the temperature dependence of the symmetry coefficients seems
to be nearly independent of the energy functional used. For cold
systems, the calculated volume and surface symmetry energy co-
efficients lie within the constraints set from analyses of different
experimental data. With temperature, the symmetry free energy
coefficients show a weak change. A strong temperature depen-
dence of av

sym is however observed, the temperature dependence
of as

sym is even stronger; this results in a rapid fall in asym(A) of
the atomic nucleus as the temperature rises. The calculations, in
addition throw light on the thermal mapping of the volume and
surface energies which are in excellent qualitative agreement with
those in common usage.
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