661 research outputs found
New Uropodina records and species from the Korean Peninsula (Acari: Mesostigmata)
Thirteen Mesostigmata species are recorded from the Korean Peninsula. Two of them Nenteria koreana and Leonardiella koreana spp. nov. are new to science, and further eleven species are recorded for the first time from the Korean Peninsula
EP-1260: Prognostic factors in hepatoma patients treated with radiotherapy for lymph node metastasis
EP-1518: Evaluation of dynamic delivery quality assurance process for internal target based RapidArc
n/
Magnetic Field Induced Spin Polarization of AlAs Two-dimensional Electrons
Two-dimensional (2D) electrons in an in-plane magnetic field become fully
spin polarized above a field B_P, which we can determine from the in-plane
magnetoresistance. We perform such measurements in modulation-doped AlAs
electron systems, and find that the field B_P increases approximately linearly
with 2D electron density. These results imply that the product |g*|m*, where g*
is the effective g-factor and m* the effective mass, is a constant essentially
independent of density. While the deduced |g*|m* is enhanced relative to its
band value by a factor of ~ 4, we see no indication of its divergence as 2D
density approaches zero. These observations are at odds with results obtained
in Si-MOSFETs, but qualitatively confirm spin polarization studies of 2D GaAs
carriers.Comment: 4 pages, 5 figure
Quarkonium from the Fifth Dimension
Adding fundamental matter of mass m_Q to N=4 Yang Mills theory, we study
quarkonium, and "generalized quarkonium" containing light adjoint particles. At
large 't Hooft coupling the states of spin<=1 are anomalously light (Kruczenski
et al., hep-th/0304032). We examine their form factors, and show these hadrons
are unlike any known in QCD. By a traditional yardstick they appear infinite in
size (as with strings in flat space) but we show that this is a failure of the
yardstick. All of the hadrons are actually of finite size ~ \sqrt{g^2N}/m_Q,
regardless of their radial excitation level and of how many valence adjoint
particles they contain. Certain form factors for spin-1 quarkonia vanish in the
large-g^2N limit; thus these hadrons resemble neither the observed J/Psi
quarkonium states nor rho mesons.Comment: 57 pages, LaTeX, 5 figure
Experimental and numerical investigation on cross flow in the PMR200 core
Papers presented to the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 20-23 July 2015.The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear grade graphite. However, the shape of graphite blocks could be easily changed by neutron damage during the reactor operation and the shape change can make the gaps between the blocks inducing bypass flow. Two types of gap shape should be considered. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively. The cross gap complicates flow field in reactor core by connecting coolant channel and bypass gap and it could lead to loss of effective coolant flow in fuel blocks. In this paper, cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and the experiment was carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results. In order to apply the CFD code to the cross flow phenomena, the prediction capability of the CFD code was verified. Good agreement between experimental results and CFD predictions was observed and the characteristics of the cross flow was discussed in detail.This work was supported by a Basic Atomic Energy Research Institute (BAERI) grant funded by the Korean government Ministry of Education and Science Technology (MEST) (NRF-2010-0018759)am201
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
On the gauge and BRST invariance of the chiral QED with Faddeevian anomaly
Chiral Schwinger model with the Faddeevian anomaly is considered. It is found
that imposing a chiral constraint this model can be expressed in terms of
chiral boson. The model when expressed in terms of chiral boson remains
anomalous and the Gauss law of which gives anomalous Poisson brackets between
itself. In spite of that a systematic BRST quantization is possible. The
Wess-Zumino term corresponding to this theory appears automatically during the
process of quantization. A gauge invariant reformulation of this model is also
constructed. Unlike the former one gauge invariance is done here without any
extension of phase space. This gauge invariant version maps onto the vector
Schwinger model.The gauge invariant version of the chiral Schwinger model for
has a massive field with identical mass however gauge invariant version
obtained here does not map on to that.Comment: 11 pages latex, no figures, A little change in Title and abstrac
The instability of non-Newtonian boundary-layer flows over rough rotating disks
We are concerned with the local linear convective instability of the incompressible boundary-layer flows over rough rotating disks for non-Newtonian fluids. Using the Carreau model for a range of shear-thinning and shear-thickening fluids, we determine, for the first time, steady-flow profiles under the partial-slip model for surface roughness. The subsequent linear stability analyses of these flows (to disturbances stationary relative to the disk) indicate that isotropic and azimuthally-anisotropic (radial grooves) surface roughness leads to the stabilisation of both shear-thinning and -thickening fluids. This is evident in the behaviour of the critical Reynolds number and growth rates of both Type I (inviscid cross flow) and Type II (viscous streamline curvature) modes of instability. The underlying physical mechanisms are clarified using an integral energy equation
- …