Adding fundamental matter of mass m_Q to N=4 Yang Mills theory, we study
quarkonium, and "generalized quarkonium" containing light adjoint particles. At
large 't Hooft coupling the states of spin<=1 are anomalously light (Kruczenski
et al., hep-th/0304032). We examine their form factors, and show these hadrons
are unlike any known in QCD. By a traditional yardstick they appear infinite in
size (as with strings in flat space) but we show that this is a failure of the
yardstick. All of the hadrons are actually of finite size ~ \sqrt{g^2N}/m_Q,
regardless of their radial excitation level and of how many valence adjoint
particles they contain. Certain form factors for spin-1 quarkonia vanish in the
large-g^2N limit; thus these hadrons resemble neither the observed J/Psi
quarkonium states nor rho mesons.Comment: 57 pages, LaTeX, 5 figure