229 research outputs found

    Analyzing Powers for Complex Fragments Formed in the 200 MeV pol.p + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Complex Fragment Emission in the p + Ag Reaction at 160 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Energy Dissipation and Multifragment Decay in Light-Ion-Induced Reactions

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Electrically Evoked Cortical Potentials (EECP) in Rabbits Using Implantable Retinal Stimulation System

    Get PDF
    NBS-ERC Supported by KOSEF (Grant R11-2000-075-01001-0) & Korea Health 21 R&D Project MOHW A05025

    Two-Particle Correlation Functions for the 200-MeV 3-He + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    A Method for Assaying Deubiquitinating Enzymes

    Get PDF
    A general method for the assay of deubiquitinating enzymes was described in detail using (125)I-labeled ubiquitin-fused αNH-MHISPPEPESEEEEEHYC (referred to as Ub-PESTc) as a substrate. Since the tyrosine residue in the PESTc portion of the fusion protein was almost exclusively radioiodinated under a mild labeling condition, such as using IODO-BEADS, the enzymes could be assayed directly by simple measurement of the radioactivity released into acid soluble products. Using this assay protocol, we could purify six deubiquitinating enzymes from chick skeletal muscle and yeast and compare their specific activities. Since the extracts of E. coli showed little or no activity against the substrate, the assay protocol should be useful for identification and purification of eukaryotic deubiquitinating enzymes cloned and expressed in the cells

    EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7

    Get PDF
    EML4-ALK is an oncogenic fusion present in ∼5% non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants with different patient outcomes. Here, we show in cell models that EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. It also recruits the NEK9 and NEK7 kinase to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4 as well as constitutive activation of NEK9 also perturb cell morphology and accelerate migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but not ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7 leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer

    Light-Ion-Induced Multifragmentation: The ISiS Project

    Full text link
    An extensive study of GeV light-ion-induced multifragmentation and its possible interpretation in terms of a nuclear liquid-gas phase transition has been performed with the Indiana Silicon Sphere (ISiS)4 pi detector array. Measurements were performed with 5-15 GeV/c p, pbar, and pion beams incident on 197^{197}Au and 2-5 GeV 3^3He incident on nat^{nat}Ag and 197^{197}Au targets. Both the reaction dynamics and the subsequent decay of the heavy residues have been explored. The data provide evidence for a dramatic change in the reaction observables near an excitation energy of E*/A = 4-5 MeV per residue nucleon. In this region, fragment multiplicities and energy spectra indicate emission from an expanded/dilute source on a very short time scale (20-50 fm/c). These properties, along with caloric curve and scaling-law behavior, yield a pattern that is consistent with a nuclear liquid-gas phase transition.Comment: 67 pages, 44 figures, all included in tar fil

    Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l
    corecore