283 research outputs found

    Effects of salience are short-lived

    Get PDF
    A salient event in the visual field tends to attract attention and the eyes. To account for the effects of salience on visual selection, models generally assume that the human visual system continuously holds information concerning the relative salience of objects in the visual field. Here we show that salience in fact drives vision only during the short time interval immediately following the onset of a visual scene. In a saccadic target-selection task, human performance in making an eye movement to the most salient element in a display was accurate when response latencies were short, but was at chance when response latencies were long. In a manual discrimination task, performance in making a judgment of salience was more accurate with brief than with long display durations. These results suggest that salience is represented in the visual system only briefly after a visual image enters the brain. Copyright © 2008 Association for Psychological Science

    Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification

    Get PDF
    We conducted a designed experiment to quantify sources of uncertainty in geologists' interpretations of a geological cross section. A group of 28 geologists participated in the experiment. Each interpreted borehole record included up to three Palaeogene bedrock units, including the target unit for the experiment: the London Clay. The set of boreholes was divided into batches from which validation boreholes had been withheld; as a result, we obtained 129 point comparisons between the interpreted elevation of the base of the London Clay and its observed elevation in a borehole not used for that particular interpretation. Analysis of the results showed good general agreement between the observed and interpreted elevations, with no evidence of systematic bias. Between-site variation of the interpretation error was spatially correlated, and the variance appeared to be stationary. The between-geologist component of variance was smaller overall, and depended on the distance to the nearest borehole. There was also evidence that the between-geologist variance depends on the degree of experience of the individual. We used the statistical model of interpretation error to compute confidence intervals for any one interpretation of the base of the London Clay on the cross section, and to provide uncertainty measures for decision support in a hypothetical route-planning process. The statistical model could also be used to quantify error propagation in a full 3-D geological model produced from interpreted cross sections

    Enhanced mapping of artificially modified ground in urban areas : using borehole, map and remotely sensed data

    Get PDF
    The report described here is focused on how using boreholes and attributes from boreholes increased and enhanced the mapping of Artificially Modified Ground, and helped measure landscape evolution change in the urban environment. These attributes from boreholes include the presence of AMG in a borehole, the thickness of AMG recorded, the start height of a borehole and the location of boreholes (and other boreholes in close proximity) with modern topological features and geological maps

    The London Basin superficial and bedrock LithoFrame 50 Model

    Get PDF
    This report describes the methodology and datasets used in the construction of the 1:50 000 resolution superficial and bedrock geological model of the London Basin. The London Basin study area was divided into twelve 20 x 20 km tiles, with construction of the first tiles beginning in 2006 and completion of the combined model in 2014. This time period coincided with the ongoing development of GSI3D software which was used to construct much of the model. The GSI3D software was used to calculate a rockhead (base Quaternary and Anthropocene) surface that was then used as a capping surface for the modelling of the bedrock geology in the GOCAD® software. The model complements the corresponding DiGMapGB-50 tiles of the area and consists of about 80 modelled geological units, comprising mass movement (landslip), artificial, superficial, and bedrock. This report supersedes an earlier report detailing the construction of the superficial part of this model (Burke et al. 2013). A glossary of technical terms used is included at the end of this report

    A geological model of London and the Thames Valley, southeast England

    Get PDF
    Many geological survey organisations have started delivering digital geological models as part of their role. This article describes the British Geological Survey (BGS) model for London and the Thames Valley in southeast England. The model covers 4800 km2 and extends to several hundred metres depth. It includes extensive spreads of Quaternary river terraces and alluvium of the Thames drainage system resting on faulted and folded Palaeogene and Cretaceous bedrock strata. The model extends to the base of the Jurassic sedimentary rocks. The baseline datasets used and the uses and limitations of the model are given. The model has been used to generate grids for the elevation of the base of the Quaternary, the thickness of Quaternary deposits, and enabled a reassessment of the subcrop distribution and faulting of the Palaeogene and Cretaceous bedrock units especially beneath the Quaternary deposits. Digital outputs from the model include representations of geological surfaces, which can be used in GIS, CAD and geological modelling software, and also graphic depictions such as a fence diagram of cross-sections through the model. The model can be viewed as a whole, and be dissected, in the BGS Lithoframe Viewer. Spatial queries of this and other BGS models, at specific points, along defined lines or at a specified depth, can be performed with the new BGS Groundhog application, which delivers template-based reports. The model should be viewed as a first version that should be improved further, and kept up to date, as new data and understanding emerges

    A 3D geological background for Knowsley Industrial Park and surrounding areas, NW England

    Get PDF
    This report describes the results of a study carried out by the British Geological Survey (BGS) on behalf of the Environment Agency NW to investigate the underlying geology beneath Knowsley Industrial Park, Merseyside, NW England. The overarching aim of the project was to establish a 3D geoscience framework beneath the Knowsley Industrial Park to enable the Environment Agency (the Agency) to assess the vulnerability of the underlying Sherwood Sandstone aquifer. The vulnerability of the aquifer to pollution from current and historic contamination of land, potentially leaking foul sewers and contaminated surface water drains could then be assessed by reference to the underlying geology. In addition to the 3D geological model, United Utilities pipeline data for foul and surface water drainage was provided by the Agency. This pipeline information was analysed and integrated with the geological data to provide an assessment of the potential linkage between the pipes and the underling bedrock or superficial geology in which they are sited. Over 300 additional paper borehole records were provided by the Agency from previous environmental site investigations carried out in the industrial park and incorporated into the BGS databases. In total, 1279 coded boreholes were used in the study. Of these, 733 were used to construct 58 geological cross-sections. The 3D geological model revealed a sequence of superficial deposits across the site comprising glacial, post-glacial and artificial deposits overlying the Sherwood Sandstone Group, that in places are deeply weathered to form loose sand. In the south-east and north-west of the site, rocks belonging to the Sherwood Sandstone Group crop out at surface. The vulnerability of the Sherwood Sandstone aquifer beneath the site, to pollution from contaminated water, depends in part on the distribution and thickness of weakly permeable superficial deposits such as clay or silt. The geological model has revealed that till is the only clay dominated unit present beneath the site and for this reason, invert levels of foul and surface water pipes were compared to this geological deposit as it may influence the potential vulnerability of the underlying aquifer. Invert levels represent the elevation of the base of the pipe. 4722 pipeline segments were analysed and classified according to their minimum invert level (representing the maximum depth below ground level) recorded for each segment. This information was used to identify pipeline segments that occurred above, below or within till. Pipeline segments interpreted to lie within or above the till were subdivided according to whether they were underlain by greater or less than 2.5 m of till. 2.5 m represents the average thickness of till calculated from the 3D geological model. Pipeline segments whose invert level occurs beneath the till will lie directly within the Sherwood Sandstone aquifer or sand and gravel dominated superficial deposits and therefore the relative hazard potential may be higher than those where clay dominated superficial deposits occur between them and the underlying aquifer. In general, the results indicate that the northern part of Knowsley Industrial Park and the northwestern part of the wider project area are underlain by greater than 2.5 m of till and that pipelines lie above the top surface of the till or within it. In contrast, the southern part of Knowsley Industrial Park and the south-western part of the wider project area are underlain generally by less than 2.5 m of till and pipeline segments occur below the till or directly within the Sherwood Sandstone aquifer. This information can be used as a preliminary screening or prioritisation tool. It can identify potential areas where the Sherwood Sandstone aquifer is most vulnerable to pollution from contaminated groundwater from poor condition, potentially leaking sewers and drains in the subsurface

    Formation of a conceptual framework during the development of a patient-reported outcome measure for early gastrointestinal recovery: phase I of the PRO-diGi study

    Get PDF
    Aim Patients admitted to hospital for abdominal surgery often experience gastrointestinal dysfunction. Many studies have reported outcomes following gastrointestinal dysfunction, yet there is no unified definition of recovery or a validated patient-reported outcome measure (PROM). The first stage of PROM development requires formation of a conceptual framework to identify key themes to patients. The aim of this study was to utilize semistructured interviews to identify core themes and concepts relevant to patients to facilitate development of a conceptual framework. Method Adult patients admitted to hospital for major gastrointestinal, urological or gynaecological surgery, in an emergency or elective setting, were eligible to participate. Patients treated nonoperatively for small bowel obstruction were also eligible. Interviews were conducted by telephone, audio-recorded, transcribed, coded and analysed using NVivo software by two researchers and reviewed by lay members of the steering group. Interviews continued until data saturation was reached. Ethical approval was gained prior to interviews (21/WA/0231). Results Twenty nine interviews were completed (17 men, median age 64 years) across three specialties (20 gastrointestinal, six gynaecological, three urological). Two overarching themes of ‘general recovery’ and ‘gastrointestinal symptoms’ were identified. General recovery included three themes: ‘life impact’, ‘mental impact’, including anxiety, and ‘physical impact’, including fatigue. Gastrointestinal symptoms included three themes: ‘abdominal symptoms’ such as pain, ‘diet and appetite’ and ‘expulsory function’, such as stool frequency. A total of 18 gastrointestinal symptoms were identified during patient recovery—many of which lasted several weeks following discharge. Conclusion This study reports a range of gastrointestinal and nongastrointestinal symptoms experienced by patients during early gastrointestinal recovery. Identified symptoms have been synthesized into a conceptual framework to enable development of a definitive PROM for early gastrointestinal recovery

    Safety of zoledronic acid and incidence of osteonecrosis of the jaw (ONJ) during adjuvant therapy in a randomised phase III trial (AZURE: BIG 01-04) for women with stage II/III breast cancer

    Get PDF
    The AZURE trial is an ongoing phase III, academic, multi-centre, randomised trial designed to evaluate the role of zoledronic acid (ZOL) in the adjuvant therapy of women with stage II/III breast cancer. Here, we report the safety and tolerability profile of ZOL in this setting. Eligible patients received (neo)adjuvant chemotherapy and/or endocrine therapy and were randomised to receive neither additional treatment nor intravenous ZOL 4 mg. ZOL was administered after each chemotherapy cycle to exploit potential sequence-dependent synergy. ZOL was continued for 60 months post-randomisation (six doses in the first 6 months, eight doses in the following 24 months and five doses in the final 30 months). Serious (SAE) and non-serious adverse event (AE) data generated during the first 36 months on study were analysed for the safety population. 3,360 patients were recruited to the AZURE trial. The safety population comprised 3,340 patients (ZOL 1,665; control 1,675). The addition of ZOL to standard treatment did not significantly impact on chemotherapy delivery. SAE were similar in both treatment arms. No significant safety differences were seen apart from the occurrence of osteonecrosis of the jaw (ONJ) in the ZOL group (11 confirmed cases; 0.7%; 95% confidence interval 0.3–1.1%). ZOL in the adjuvant setting is well tolerated, and can be safely administered in addition to adjuvant therapy including chemotherapy. The adverse events were consistent with the known safety profile of ZOL, with a low incidence of ONJ
    • …
    corecore