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Abstract. We conducted a designed experiment to quantify

sources of uncertainty in geologists’ interpretations of a ge-

ological cross section. A group of 28 geologists participated

in the experiment. Each interpreted borehole record included

up to three Palaeogene bedrock units, including the target

unit for the experiment: the London Clay. The set of bore-

holes was divided into batches from which validation bore-

holes had been withheld; as a result, we obtained 129 point

comparisons between the interpreted elevation of the base of

the London Clay and its observed elevation in a borehole not

used for that particular interpretation. Analysis of the results

showed good general agreement between the observed and

interpreted elevations, with no evidence of systematic bias.

Between-site variation of the interpretation error was spa-

tially correlated, and the variance appeared to be stationary.

The between-geologist component of variance was smaller

overall, and depended on the distance to the nearest borehole.

There was also evidence that the between-geologist variance

depends on the degree of experience of the individual. We

used the statistical model of interpretation error to compute

confidence intervals for any one interpretation of the base of

the London Clay on the cross section, and to provide uncer-

tainty measures for decision support in a hypothetical route-

planning process. The statistical model could also be used

to quantify error propagation in a full 3-D geological model

produced from interpreted cross sections.

1 Introduction

Three-dimensional (3-D) models are now the state of the art

for presenting geologists’ knowledge and interpretation of

subsurface structures, and are supplied to varied users of ge-

ological information. There is no single methodology for the

production of models, and the method will reflect the geo-

logical setting and the nature of the information available to

the modeller, which may include geophysical imagery, bore-

holes and surface observations. Models can be produced by

geostatistical interpolation (e.g. Lark and Webster, 2006) or

by a combination of geostatistical methods with expert in-

tervention to ensure geologically realistic results (e.g. Gun-

nink et al., 2013). Models may also be based on inversions of

geophysical data, constrained by geological knowledge and

interpretation (Jessell et al., 2010). The approach of partic-

ular interest here is based on expert interpretation of bore-

holes along interlocking sets of cross sections with subse-

quent interpolation from the interpreted sections to produce

models of volumes in 3-D. This is exemplified by the GSI3D

software (Kessler and Mathers, 2004; Kessler et al., 2009).

Expert interpretation of a cross section entails the interpreta-

tion of boreholes and the sequential construction of the basal

contact of each geological unit in the stack. This process de-

pends on the expert interpretation of boreholes in line with

rules, explicit or tacit, which control the shapes of surfaces

and the circumstances in which faults must be invoked to

explain their observed positions. Because these rules encap-

sulate geological knowledge, they provide a sound basis for

modelling, particularly when limited observations are avail-

able. However, the interpretation of the cross sections in-

evitably has an attendant uncertainty, and this is propagated

when the interpreted cross sections are combined to model

volumes in 3-D by interpolation.

The uncertainty in a 3-D model is of interest to data

users who will apply it for decision making. For this rea-

son, there has been considerable interest in the development

of quantitative or semi-quantitative operational methods to
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characterise the uncertainty in 3-D models and the variation

of this uncertainty in space (e.g. Lelliott et al., 2009).

If information in 3-D is produced by geostatistical interpo-

lation, then the uncertainty can be quantified directly on the

basis of the geostatistical model (Lark and Webster, 2006). In

the study reported by Gunnink et al. (2013), the geostatistical

predictions were modified to ensure geological consistency.

The original geostatistical measures of uncertainty no longer

hold for the modified values, so Gunnink et al. (2013) used

a cross-validation method to quantify uncertainty. However,

this is feasible only if many borehole observations are avail-

able. Bistacchi et al. (2008) present a case study where the

uncertainty in the modelled position of planar surfaces in the

3-D space could be computed from information about the

uncertainty of the angular observations on which the model

was based, and the distance over which these observations

were projected. Tacher et al. (2006) used the simple kriging

variance as a measure of uncertainty for the position of mod-

elled geological surfaces, the parameters of the variogram

being informally elicited to reflect expert judgement about

uncertainty and its spatial dependence. In many cases 3-D

modelling is supported by interpretation of geophysical data.

Bond et al. (2007) and Torvela and Bond (2011) examine

the uncertainties in expert interpretation of seismic imagery,

and particularly how uncertainties in the conceptual geologi-

cal model which underly the interpretations contribute to the

final uncertainty. Aitken et al. (2013) discuss a measure of

“data richness” to quantify the extent to which the geological

interpretability of geophysical data, the complexity of these

data and their quality determine the uncertainty of resulting

models, and the variation of this uncertainty in space.

In this paper, we are particularly interested in the uncer-

tainty of models produced by the cross-section interpretation

methodology. Lark et al. (2013) made a direct empirical as-

sessment of the quality of one such model in a designed ex-

periment. They compared the predicted heights of units with

observed heights at a set of validation boreholes. This gave

a quantitative measure of uncertainty. However, Lark et al.

(2013) concluded that it is necessary to understand how er-

ror enters into the initial interpretation of cross sections prior

to interpolation, since the errors in the cross sections may be

predictable from factors such as the distance to boreholes or

crop lines, but propagated into the 3-D model by the inter-

polation step in a complex way. If we can understand and

quantify the uncertainty in cross-section interpretation, then

it may be possible to develop quantitative models of the un-

certainty for different “benchmark” geological settings, and

to use this to develop uncertainty measures for application to

geological models.

To this end, we undertook, and report here, an experiment

to study the error in cross-section interpretation, hypothe-

sizing that the variability of the interpretation error changes

along the section in ways that can be described by a statis-

tical model. We considered statistical models in which the

variance of the interpretation error at some location depends

on two factors. The first factor was the distance from the lo-

cation to the nearest borehole available to support the inter-

pretation of the cross section. Our hypothesis was that the

variance of interpretation error would increase with the dis-

tance to the nearest available borehole. The second factor was

the experience of the geologist making the interpretation; our

hypothesis was that the variance of interpretation error would

diminish with increasing geologist experience.

If our hypothesis is verified, then we could compute con-

fidence intervals for the interpreted height of a contact along

a cross section, and model how this uncertainty may prop-

agate in the subsequent interpolation from the interpreted

cross section into a 3-D geological model. If statistical mod-

els of the uncertainty in cross-section interpretation could

be estimated for a variety of geological settings, then these

could be used to compute uncertainty measures for new

geological models, and so to calculate, for example, deci-

sion–theoretical measures of the value of the model informa-

tion (Howard, 1966) or other criteria by which model users

can make rational decisions that account for model uncer-

tainty.

2 Methods

2.1 Geological context of the cross section

This study is based on an 8 km cross section in London which

roughly follows the A12 road from Hackney northeast across

the Lea Valley to Wanstead. The local geology (Fig. 1) con-

sists of Quaternary deposits comprising alluvium along the

valleys of the rivers Lea and Roding, with river terrace de-

posits at several levels beneath and flanking the alluvium and

capping the low interfluvial ridge.

The Quaternary deposits are generally less than 5 m in

total thickness, except beneath the Lea Valley, where up to

10 m are encountered. They rest everywhere on Palaeogene

bedrock units. In order of increasing age and depth, these

are the London Clay Formation, the Lambeth Group and the

Thanet Formation. The Quaternary deposits rest on the Lon-

don Clay Formation along part of the section, but cut down

beneath the Lea Valley into the underlying Lambeth Group

(Fig. 1). The Palaeogene deposits are underlain by the Chalk

Group (Upper Cretaceous), which is several hundred metres

thick and is the lowest unit considered that is encountered

here in approximately 10 % of the 143 available boreholes

along the cross section (Fig. 1).

The Palaeogene strata in this region are affected by the

Alpine Orogeny, and underwent gentle folding, faulting and

tilting in Oligocene–Miocene times (Sumbler, 1996). In this

study, our interest lies in the definition of the base of the

London Clay Formation. In the London area, the London

Clay comprises a grey marine silty clay with thin interbeds of

sandy clay, sand and pebble beds (Ellison et al., 2004). The

whole sequence locally exceeds 100 m in thickness, although
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Figure 1. Map of surface geology (superficial and exposed bedrock)

in the study area, with the line of the cross section shown. Map co-

ordinates are in km on the British National Grid. One interpretation

of the cross section is shown below, with the position and depth of

the full borehole set indicated.

due to erosion, considerably less is preserved along the line

of the cross section discussed here. It rests conformably on

the Lambeth Group, which consists of about 15 m of in-

terbedded colour mottled clays, sands and silts arranged in

a complex and variable vertical sequence of facies (Ellison,

1983). The London Clay Formation is present over about

60 % of the length of the cross section, and the base of this

unit, the surface of interest, is proven by 51 of the boreholes.

Along the section, the elevation of the base of the London

Clay Formation observed in the boreholes varies from nearly

10 m to −13 m relative to the Ordnance Datum (Fig. 1).

In the London area, the London Clay Formation is a rela-

tively thick firm clay without significant water flow, and it is

therefore regarded as a good medium for tunnels and excava-

tions (Ellison et al., 2004). The Lambeth Group, by contrast,

contains thin layers of alternating clay and water bearing

soft sands and silts, and the clays are also characterised by

a strong propensity to shrink-swell during cycles of wetting

and drying. As such, it consists of a very difficult medium for

excavation and tunnelling, and is best avoided wherever this

is possible (Ellison et al., 2004). As the cross section demon-

strates, parts of London are underlain at a few tens of metres

in depth by these two units (Fig. 1). Hence, the position of the

base of the London Clay Formation is critical, as it separates

these two units of radically different engineering behaviour,

and the measures of uncertainty derived in this study have

considerable potential for application in this context.

2.2 Data subsetting, geologists’ self-assessment,

and modelling

The key idea of the experiment was that each of a set of

participating geologists would make an interpretation of the

three Palaeogene bedrock units on the cross section, drawing

continuous (if occasionally interrupted) basal contacts of the

units as interpretations of the information in a set of bore-

holes. Any one participant would use a subset of all available

boreholes, so that their interpretation could be compared di-

rectly with each of a complementary validation subset. The

difference between the interpreted and observed elevations of

the base of the London Clay, the cross-section error, would

then be treated as a variable for statistical analysis to iden-

tify important features of its variability. Note that, while we

only examined the base of the London Clay, the participants

interpreted this in the wider stratigraphical context by also

drawing the bases of the other Palaeogene units.

The 51 available boreholes which prove the base of the

London Clay were subdivided by independent random sam-

pling without replacement into ten non-overlapping subsets

of five validation boreholes. We call each of these subsets a

validation batch; each is paired with its corresponding inter-

pretation batch – the complementary subset of 46 boreholes.

In this way, ten different although overlapping interpretation

batches, each with 46 boreholes which proved the base of the

London Clay, were prepared for use by geologists in the ex-

periment. Any one participant would use just one interpreta-

tion batch. His or her interpretation of the cross section could

then be compared with the five boreholes in the correspond-

ing validation batch, boreholes not used in the interpretation

of the cross section, to generate five observations of cross-

section error.

A total of 28 geologists participated in the experiment. Of

these, 22 were delegates at the GSI3D workshop which took

place at the British Geological Survey (BGS), Keyworth,

from 17 to 18 October 2012, and the GSI3D software was

used for the experiment. Some of the workshop participants

were staff of BGS, others were geologists from a variety of

organisations and countries, with varying levels of experi-

ence in geological modelling, but all with some interest and

experience, if rudimentary, in the use of the GSI3D software,

which was used for this experiment by all participants. The

remaining six geologists were BGS staff who participated in

the experiment after the workshop.

Each participant was asked to complete a question-

naire before undertaking the exercise. Their unique num-

ber was recorded on the form. They had the option of
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Table 1. Questionnaire on modelling experience and responses received.

Question: “Please indicate with a tick which of the 4

descriptions below best reflects your experience of 3-D modelling.”

Description Number of participants selecting this description

I have no experience of geological modelling in 3-D 2

I have some experience of geological modelling in 3-D

(perhaps through a training course) but little (up to 6 months)

or no experience of modelling independently

8

I have moderate experience of geological modelling in 3-D

(six months to 2 years of modelling independently)

8

I have substantial experience of geological modelling in 3-D

(more than 2 years of modelling independently)

10

recording their name and contact details on the form, or of

remaininganonymous. In the questionnaire, each participant

was asked to record a self-assessment of their experience of

geological modelling in 3-D by identifying the most appro-

priate of four general descriptions. The descriptions and re-

sponses are presented in Table 1. Note that there was some

variation in experience among the participants: two were

novices in 3-D modelling, and eight had limited experience.

This allows us to quantify the effect of increasing experience

on the variability of interpretation error.

The key principle of the experiment was explained to all

delegates, who were also provided with an explanation of the

units in the cross section. Each participant in the experiment,

on presenting at the workstations, was given a unique num-

ber, and an interpretation batch of boreholes. In addition to

the boreholes, a standard interpretation of the superficial ma-

terial (as a single unit) was provided, so that all participants

were working on a common rockhead surface. The intersec-

tions of outcrops, as mapped in 2-D, with the cross section

were also provided to all participants. A set of guidance notes

on the GSI3D software was available, and at all times a staff

member experienced with the software was available to help.

When the interpretation was complete it was saved with a

code which indicated the participant’s unique number and the

number of the interpretation batch and complementary vali-

dation batch of boreholes which had been allocated. As each

geologist presented to participate, they were allocated one of

the interpretation batches of boreholes, so that a more or less

even distribution of participants over batches was achieved.

Once each geologist had completed and saved their inter-

pretation, this was compared with the corresponding batch of

validation boreholes, and the observed and interpreted eleva-

tion of the base of the London Clay was extracted. One mod-

eller’s interpretation was not correctly saved, so this was lost,

and in some cases the London Clay was not present in the

interpretation at the location of a validation borehole. Over

all validation batches, we were able to make a total of 129

comparisons between an interpreted elevation of the base of

the London Clay at the location of a borehole in a validation

batch observed elevation in that validation borehole (i.e. in a

borehole which had not been available to the geologist who

made the particular interpretation). As described in Sect. 3.1

below, and formalised in Eq. (1), an observation of interpre-

tation error is the difference between the interpreted and ob-

served elevation of the base of the London Clay for one such

comparison. Between 10 and 20 interpretation errors could

be calculated for any validation batch.

3 Data analysis

3.1 Overview of models and analyses

This section provides an overview of the analyses under-

taken to test our hypothesis, avoiding the statistical detail.

The reader will find technical information about the statis-

tical models and their estimation in Sects 3.2–3.3, and these

can be ignored by the reader who requires only a summary of

the statistical methods. Section 3.4 explains how the selected

statistical model for cross-section errors was interrogated to

represent the cross-section uncertainty with confidence inter-

vals and an analysis of the implications of this uncertainty

for a hypothetical application.

As reported in the previous section, the experimental re-

sults consist of a set of 129 comparisons between the inter-

preted and observed elevations of the base of the London

Clay, where each interpretation in the set had been made

without access to that particular observation. The variable

for statistical analysis is the cross-section error, obtained for

each of the 129 comparisons by subtracting the interpreted

elevation of the base from the observed elevation. An error

of zero therefore means that the observed and interpreted el-

evations were the same in the particular comparison. A nega-

tive error means that the interpreted base was higher than the

observed base in that comparison.
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The statistical analysis of these values was done with lin-

ear mixed models. These treat the cross-section errors as

a combination of a fixed effect (here a constant, the mean

cross-section error) with random effects. The random effects

represent sources of variation in the observed errors, and here

account for differences between batches of validation bore-

holes (are the mean errors for the different batches signifi-

cantly different?), between the sites of validation boreholes

within batches (are the mean errors for different locations

within each batch significantly different from each other?),

and between the geologists. The means of the random effects

are zero; their variances are interesting because they quantify

the uncertainty introduced into the interpretation of the cross

section by the factors which they represent (differences be-

tween modellers, differences between locations). In some of

the more complex models, we used the variance of a random

effect that was modelled as a function of some covariate. For

example, in one case, the variance of the effect of location

was modelled as a function of the distance from the location

to the nearest borehole available for interpretation (i.e. the

nearest borehole in the interpretation batch allocated to the

particular geologist). Such models could be used to predict

how interpretation uncertainty varies along a cross section.

We considered seven linear mixed models which were fit-

ted in order, so in some cases a statistical inference about one

model (i.e. showing that a particular random effect was not

significant) determined the form of subsequent models (that

effect was dropped).

The random effects which we considered can be defined

with respect to two properties. The first is dependency. If

a random effect is independent, then the value that it takes

for one instance tells us nothing about the value that it takes

in other instances. In the first model, 1a, the random effect

that models differences between batches was independent,

because the batches were formed by independent random

sampling. In other models, a random effect may not be inde-

pendent, but may have a correlation structure. In all models,

the random effect that models differences between sites had a

spatial correlation structure: one might expect cross-section

errors at two nearby sites to be more similar than errors at

two sites which are far apart. In models 1a and 1b, the ran-

dom effect which accounts for variability of geologist inter-

pretations was independent within any site (the effect for one

geologist is independent of the effect for another), but the

cross-section errors for any one geologist at different sites

were modelled as correlated (a geologist who tends to inter-

pret the base too high at one site might make a similar error

at other sites).

The second property of random effects is stationarity in

the variance (stationarity hereafter). A stationary random ef-

fect has a constant variance. However, the variance of a

non-stationary random effect may be modelled as a vari-

able which depends on some other factor. For example, in

model 2a, the variance of the geologist random effect de-

pends on the level of experience that each geologist recorded

in the questionnaire (Table 1).

Table 2 summarises the differences between the models.

Mode 1a is a general one in which there are stationary ran-

dom effects for batch, site and geologist differences. The

batch effect is also independent, the site effect is spatially

correlated (as in all models) and the geologist effect shows

correlation between errors made by the same geologist. Mod-

els 1b and 1c were fitted to test, respectively, whether the

variance of the batch effect could be assumed to be zero and

whether the geologist random effect could be modelled as in-

dependent. The final model in group 1, 1d, was meant to see

whether the variance of the site effect was non-stationary, de-

pending on the distance to the nearest available borehole.

In all the models in a second group of three, the batch ef-

fect was dropped, and the site effect was spatially correlated

and stationary. The geologist effect was independent, but we

considered non-stationary alternatives in which the variance

depended on (2a) the distance to the nearest borehole avail-

able for interpretation, (2b) modeller self-identified experi-

ence, and (2c) both these factors.

We compared models in two ways (details in Sect. 3.2).

In some cases, it was possible to compare models by a log-

likelihood ratio statistic L. These are presented in Tables 4

and 5 for comparisons where they can be made. In each case

the compared models are indicated and the statistic presents

the strength of evidence for the effect of additional terms in

the more complex model. The recorded p value is the proba-

bility of finding evidence as strong or stronger than the value

of L if the simpler model were true. If p is larger than 0.05,

we retain the simpler model. Not all models can be compared

this way, and where the log-likelihood ratio statistic could not

be used, we compared models by Akaike’s information crite-

rion (AIC, details in Sect. 3.3). In any comparison, the model

for which AIC is smallest was selected. The AIC is not a for-

mal significance test, but by selecting the model with smaller

AIC, one minimises the expected information loss through

the selection decision (Verbeke and Molenberghs, 2000). A

summary of the key comparisons between models, and the

inferences made from them, is provided in Table 6.

3.2 Statistical methodology: linear mixed models,

the general model (1a), and three variants

The results from this experiment were analysed by the fitting

and comparison of linear mixed models (LMM) (Verbeke

and Molenberghs, 2000) for the cross-section errors. One

observation of cross-section error corresponds to a particu-

lar geologist’s interpretation at one of the sites in the valida-

tion batch corresponding to the interpretation batch to which

that geologist had been allocated. The interpretation at that

site had therefore been made without access to the informa-

tion in the borehole there. This gives us a total of N = 129

observations of cross-section error. If the interpreted eleva-

tion of the base of the London Clay by geologist m at site

www.solid-earth.net/5/1189/2014/ Solid Earth, 5, 1189–1203, 2014
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Table 2. Summary of statistical models. In all cases the form of the random effects component for between-batch, between-site and between-

geologist effects is indicated. For each term the dependency is given (independent or an indicated correlation structure) and it is indicated

whether the variance is constant (stationary) or modelled as a variable quantity. A ↓ indicates that a term is dropped from the model.

Model Batch Site Geologist

Dependency Variance Dependency Variance Dependency Variance

1a Independent Stationary Spatially Stationary Correlated1 Stationary

correlated

1b ↓ Spatially Stationary Correlated1 Stationary

correlated

1c ↓ Spatially Stationary Independent Stationary

correlated

1d ↓ Spatially DNAB2 Independent Stationary

correlated

2a ↓ Spatially Stationary Independent DNAB2

correlated

2b ↓ Spatially Stationary Independent Experience3

correlated

2c ↓ Spatially Stationary Independent DNAB +

correlated Experience

1 Errors of interpretations by the same geologist are correlated. 2 Variance depends on distance to nearest available borehole for

interpretation. 3 Variance depends on geologists self-identified experience of 3-D modelling (Table 1).

k within batch i is zs(bi,sk,gm), and the corresponding ob-

served elevation in the validation borehole is zo(bi,sk), then

the correspondingobservation of cross-section error is de-

fined as

ε(bi,sk,gm)= z
o(bi,sk)− z

s(bi,sk,gm). (1)

A negative error therefore means that the geologist’s inter-

pretation is higher than the observed elevation of the base of

the London Clay.

The fixed effect in all LMM that were considered here

was the mean cross-section error. The random effects mod-

elled the contribution of differences between batches, differ-

ences between sites and differences between geologists. In

an LMM, the random effects are modelled as Gaussian ran-

dom variables with mean zero and a variance. The variance

may be stationary, a parameter of the LMM, or it may be a

variable expressed as a parametric function of some covariate

with parameters to be estimated (e.g. Nelder and Lee, 1998;

Lark, 2009). The random effects and their parameters are of

interest because they may be informative about sources of

cross-section error, and allow us to predict cross-section er-

ror variance in similar settings. Once an appropriate model

for the random effects has been selected, one may use gener-

alised least squares to estimate the overall mean model error

and test whether it appears to be significantly different from

zero.

Model 1a takes the following form for a set of observations

of cross-section error in a vector ε of length N :

ε =Mα +Xbβb+XsZs+ ηg, (2)

where M is an N ×p design matrix that associates each ob-

servation of cross-section error in ε with a value of a fixed

effect variable, contained in the vector α of length p. In all

models considered in this paper, the fixed effect is a constant,

the mean cross-section error, so p = 1, α contains the mean

and M is an N × 1 vector of ones. Other terms in the model

are explained in the following paragraphs.

The matrix Xb is anN×Nb design matrix for the between-

batch random effect whereNb is the number of batches. Row

n of Xb corresponds to the nth observation of cross-section

error. If the nth observation of cross-section error belongs

to the mth batch out of Nb, then the element in column m of

row n of Xb is one, and all other elements in the row are zero.

The vector βb is an Nb× 1 vector which contains the mean

errors for the batches, which are treated as random variables.

One may write down an expression for the covariance matrix

of the N between-batch components of the observed cross-

section errors, Cb.
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Because the sites are randomly allocated to batches, it is

assumed that the batch effects are independent, and so

Cb = σ
2
b Rb

= σ 2
b XbXT

b , (3)

where σ 2
b is the variance of the batch effect, and Rb denotes

the correlation matrix of batch effects which is obtained,

given the assumptions of independence, as the product of the

batch design matrix with its transpose (denoted by the super-

script T).

The term Xs is an N ×Ns design matrix which associates

each of the N observations of cross-section error with one

of the Ns validation sites. These sites are not assumed to be

independent of each other, since they were chosen by purpo-

sive sampling, and not by an independent random sampling

design. Since the sampling design does not allow us to treat

the between-site effect as an independent random variable,

we rather invoke a random statistical model of the between-

site effect (de Gruijter et al., 2006). The random variable,

which is contained in the length-Ns random vector Zs is as-

sumed to beNs-variate Gaussian with mean zero andNs×Ns

covariance matrix S:

Zs ∼N (0Ns ,S), (4)

where 0Ns is a vector length Ns of zeroes. We assume that

Zs is a second-order stationary random variable, so that the

covariance of the values at any two sites depends only on

the interval in space between those sites (Stein, 1999). Here

we use a standard covariance function from geostatistics, the

Matérn function (Matérn, 1986). Under this model, the co-

variance between two locations separated by distance d is

C(d)= c0+ c1, d = 0

= c1

{
2κ−10(κ)

}−1
(
d

φ

)κ
Kκ

(
d

φ

)
, d > 0, (5)

where Kκ(·) is a modified Bessel function of order κ , κ is a

smoothness parameter – see Diggle and Ribeiro (2007) for

a discussion – φ is a distance parameter, and c0 and c1 are,

respectively, the spatially uncorrelated and correlated com-

ponents of variance of the between-site variable. Note that,

while in principle, the covariance can be modelled as a func-

tion of the direction as well as the length of the separation

vector between locations, when our observations of cross-

section error are aligned on an almost-straight cross section,

we consider distance only.

If the distance between site k in batch i and site l in batch

j is denoted by d{i,k},{j,l}, then one may compute a between-

site covariance matrix S, which is an Ns×Ns matrix. If the

rth out of Ns sites is site k in batch i, and the cth out of Ns

sites is site l in batch j , then

S [r,c] = C(d{i,k},{j,l}), (6)

and the N×N between-sites effect covariance matrix for the

LMM for all N observations of cross-section error is given

by

Cs = XsSXT
s , (7)

where Xs is the N ×Ns design matrix for sites. Given the

site design matrix, and the distances among the observations

of cross-section error, this covariance matrix is determined

by the four parameters of the Matérn covariance function:

c0, c1, κ and φ.

The geologist effect in model 1a, the term ηg in Eq. (2),

is somewhat more complex. At each site within a batch, a

cross-section error is observed for each geologist who was

allocated the corresponding batch of boreholes. The term ηg

is the difference between the cross-section error for a partic-

ular geologist at a particular site, and the mean cross-section

error at that site. It is therefore the between-geologist within-

site effect, but we call it the geologist effect for brevity.

If each geologist had one and only one validation borehole,

then the geologist effect would be simply nested within sites

as an independent random error (regardless of whether there

was one or more observations of cross-section error at each

validation site). However, in the current experiment, each of

the geologists was allocated all validation boreholes in a par-

ticular batch, and so we must choose an appropriate statistical

model for the between-geologist effect observed at each of a

set of boreholes. In model 1a, we treat the geologist effects

as correlated random variables within batches. If we denote

by ε̄ (bi,sk) the mean cross-section error at site k in batch i,

the geologist effect for geologist m at the same site is

η(bi,sk,gm)= ε(bi,sk,gm)− ε̄(bi,sk). (8)

In the random effects component of model 1a, we assume

that the correlation of the geologist effects is

Corr{η(bi,sk,gm),η(bj ,sl,gn)} = 1, i = j,k = l,m= n

= ρ, i = j,k 6= l,m= n

= 0, otherwise. (9)

In words, the geologist effects for observations of cross-

section error at two different sites are uncorrelated if the

geologists are different (which includes all between-batch

comparisons), and have a correlation of ρ if the geologist

is the same. The covariance matrix for the geologist effect in

model 1a is therefore

Cg = σ
2
gRg, (10)

where Rg is an N×N correlation matrix of geologist effects

with values 1 on the main diagonal, ρ on off-diagonal ele-

ments which correspond to pairs of cross-section errors cor-

responding to the same geologist, and zero in all other ele-

ments. The variance of the between-geologist effect is σ 2
g .
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The random effects of the model in Eq. (2) are charac-

terised by the between-batch variance, σ 2
b , the four param-

eters of the Matérn covariance model for the between-site

variable (c0, c1, κ and φ), the between-geologist within site

variance σ 2
g and the correlation parameter ρ. We used resid-

ual maximum likelihood (REML) to estimate these param-

eters (Patterson and Thompson, 1971; Smyth and Verbyla,

1996). This proceeds on the assumption that ε in Eq. (2) is a

realisation of a multivariate Gaussian random variable, E:

E ∼ N (Mα,V) (11)

where V is the covariance matrix given by

V= Cb+Cs+Cg. (12)

Under this model the residual log-likelihood, ignoring con-

stants, is given by

`R =−
1

2

{
log |V| + log

∣∣∣MTV−1M

∣∣∣+ εTPε
}
, (13)

where

P= V−1
−V−1M(MTV−1M)−1MTV−1. (14)

The Gaussian assumption can not be tested strictly, because

it is an assumption about a multivariate distribution of which

we have a single realisation. However, its plausibility can be

tested by examining a histogram and summary statistics of

the residuals of an ordinary least squares fit of the fixed ef-

fects model, equivalent to the statistics of the data in this case

where a uniform mean is the only fixed effect. Where neces-

sary, data may be transformed to a new scale of measurement

to make the assumption more plausible.

We used the optim procedure in the R package (R develop-

ment core team, 2013) to find REML estimates of the random

effects parameters, the values that maximise the likelihood

as defined in Eq. (13). The L-BFGS-B optimisation method

was selected, a quasi-Newton optimiser in which upper and

lower bounds are supplied for the parameters to be estimated

(Byrd et al., 1995).

In the proposed model, there are P = 7 random effects pa-

rameters (or variance parameters) to be estimated by REML.

One may consider the “null hypothesis” that one of these pa-

rameters can be set at a fixed value, to simplify the model. For

example, if one assumed that the cross-section errors for the

same geologist at two sites within a batch are uncorrelated,

then ρ = 0. In general a “null” model with P −g parameters

is said to be nested within a more complex “full” model with

P parameters if the null model can be regarded as a particular

case of the full model with the g additional parameters taking

fixed values. The maximised residual likelihood for the full

model `R,F is at least as large as that for the null model, `R,N.

To test whether the improvement of fit from the g additional

parameters is large enough to justify their inclusion within

the model one may compute the log-likelihood ratio statistic

(Verbeke and Molenberghs, 2000)

L= 2(`R,F− `R,N). (15)

We call a comparison between two models a “standard case”

if the g additional parameters in the more complex model

all take definite values in the null model, and these param-

eter values are not on the boundary of the parameter space

in the null model. In a standard case where the null model is

the true model, L is distributed as χ2 with g degrees of free-

dom (Stram and Lee, 1994). Note that this procedure is valid

for residual likelihoods only when the models have the same

fixed effects structure.

One may use this procedure to compare the LMM in

Eq. (2) with one in which the geologist effects are regarded as

uncorrelated between sites within batches. In the full model,

ρ ∈ [−1,1], so the fixed value, ρ = 0, in the null model is

not at a boundary. The comparison is therefore a standard

case with L∼ χ2(1) under the null hypothesis.

However, if we consider a null model in which the

between-batch variance is zero this is not a standard case

since zero is the lower bound for a variance. A more gen-

eral criterion for comparing models of differing complex-

ity, although not a formal test, is to compute for each model

Akaike’s information criterion – AIC (Akaike, 1973):

A=−2`+ 2P, (16)

where ` is the maximised log likelihood (natural logarithms)

and P is the number of parameters. That model is preferred

for which A is smallest, so the term 2P is, in effect, a penalty

for model complexity.

Model 1b is a variant of 1a in which the between-batch

variance is dropped. Since the batches were formed at ran-

dom, one may expect that the mean error does not differ be-

tween the batches, except for random sample variation. How-

ever, in a comparison between these two models, the null (1b)

is formed by fixing the between-batch variance at zero, which

is a boundary in parameter space (variances cannot be nega-

tive). The models are therefore compared on the AIC.

Model 1c is a variant of 1a in which the correlation ρ = 0.

As noted above, this comparison can be made by comput-

ing the log-likelihood ratio statistic L and testing it against

χ2(1).

Having selected one model from among 1a–1c, a vari-

ant was considered in which the correlated variance of the

between-site random variable, c1 in Eq. (5), depends on the

distance from that site to the nearest borehole available for

interpretation (i.e. not in the validation set for the batch).

We considered the possibility that this variance is a linear

function of distance to the nearest borehole. The intercept

and slope of this function, αs,0 and αs,1, respectively, are

therefore substituted for c1 in model 1d. The comparison

of between the null model selected from among 1a–1c and

the more complex variant 1d can be made using the log-

likelihood ratio, assumed to be distributed as χ2(1) under
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Table 3. Summary statistics of cross-section error.

Mean 0.70

Median 0.38

SD 2.90

Min −6.67

Max 7.44

Skewness 0.28

Kurtosis −0.14

the null model since model 1d has one more parameter than

the null.

3.3 Statistical methodology: refining the model to

explain the geologist variance (models 2a, 2b and 2c)

Here we consider the possibility that the between-geologist

variance can be replaced by a parametric function. In princi-

ple this is compatible with any variant of the models consid-

ered so far. The expression for the between-geologist covari-

ance matrix in Eq. (10) is modified to

Cg =6gRg6g, (17)

where Rg is defined as for Eq. (10), and

6g = diag(σ g), (18)

where σ g is a vector of lengthN which contains the standard

deviation of the between-geologist effect for each observa-

tion of cross-section error, predicted from some parametric

function. The operator “diag” denotes that the elements of

this vector are put in order on the main diagonal of an N×N

matrix, with off-diagonal elements equal to zero.

Three parametric functions were considered. In the first,

the between-geologist variance for the rth observation of

cross-section error depends on the distance from the site

which corresponds to the rth observed cross-section error

and the nearest borehole available for interpretation to the

corresponding site. Again, a linear function was considered,

so the parameter σ 2
g in the first and second group of mod-

els was replaced by the intercept and slope of this predictive

relationship, αg,0 and αg,1, respectively. These parameters,

along with the remaining ones, were estimated by REML.

The second parametric model considered used the geolo-

gist’s self-assessment of experience in 3-D geological mod-

elling. There were four levels of experience to choose from,

so the parameter σ 2
g in the first and second group of models

was replaced by four parameters, variances for each level of

experience: σ 2
g,1, σ

2
g,2, σ

2
g,3, σ

2
g,4.

A final model was considered which combined the last

two variants, with separate intercepts and slopes of the lin-

ear function for the geologist standard deviation being spec-

ified for each level of experience (i.e. eight new parameters

replacing σ 2
g in the first and second group of models.

Note that the parametric functions in these three models

return variances, which may vary from one observation of

cross section to another. The terms in σ g are standard devia-

tions, i.e. the square roots of the corresponding variances.

3.4 Simulating from the selected model to represent

cross-section uncertainty

We used the selected model (model 2a as described in the

results section below) to simulate realisations of the ran-

dom component of cross-section error along a part of the

cross section (from 4000 m from the start of the section to

the end). We considered a situation where all the boreholes

along the cross section were available to the geologist. We

assumed that the cross-section error is zero at the location

of a borehole, and then simulated the components of the er-

ror under model 2a conditional on this at regularly-spaced

locations along the cross section. The between-site compo-

nent was simulated as a multivariate normal random variate

by Cholesky decomposition of the joint covariance matrix

of the regularly spaced sampling locations and the borehole

locations. This is described in detail by Goovaerts (1997).

We used the CHOL R procedure (R development core team,

2013). To simulate the between-geologist component, we

evaluated the variance of this component at each regularly

spaced location on the cross section from the parameters of

model 2a as a function of the distance to the nearest borehole.

A realisation of the between-geologist component of model

error at each location was then simulated as a normal ran-

dom variable, with mean zero and variance set to this com-

puted value. We used the rnorm R procedure to do this (R

development core team, 2013). The overall cross-section er-

ror was then simulated by the sum of these two components.

A total of 10 000 independent realisations of cross-section

error were simulated this way.

By finding the 2.5th and 97.5th percentiles of the simu-

lated cross-section errors at any location, we approximate

the 95 % confidence interval for model error. This can be

used to visualise the uncertainty. The simulations can also

be used to answer other questions. Consider, for example,

an engineer who wishes to dig a tunnel through the London

Clay along the length of this part of the cross section. We as-

sume that the engineer wants to put the route of the tunnel as

close as possible to the base of the London Clay, but wants to

avoid intruding on the underlying Lambeth Group. The con-

ditional simulations can be used to assess the risk of intrud-

ing on the Lambeth Group if the tunnel route is k m above

the interpreted base of the London Clay everywhere along

the route. Assume that the engineer specifies that the tunnel

should enter the Lambeth Group over no more than 1 % of its

length. What is the smallest value of k consistent with this?

One could examine the 10 000 realisations of cross-section

error and find, for increasing values of k, the number of re-

alisations for which the engineer’s specification is met: nk .
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Table 4. Model 1 and variants, parameter estimates and inferences.

Model Random effects parameters `R AIC Contrast∗ L p

Batch Site Geologist

σ 2
b

c0 c1 κ φ σ 2
g ρ

1a 0.0 0.0 6.84 2.5 4.36 1.45 −0.093 −148.89 311.78

1b ∗∗
↓ 0.0 6.84 2.5 4.36 1.45 −0.093 −148.89 309.78

1c ↓ 0.0 6.86 2.5 4.38 1.45 ↓ −149.75 309.50 1c vs. 1b 1.72 0.19︷ ︸︸ ︷
1d αs,0 αs,1

↓ 0.0 6.03 0.01 2.5 4.38 1.45 ↓ −149.48 310.96 1c vs. 1d 0.54 0.46

∗ The first-named model is the null model. ∗∗ A ↓ indicates that a term has been dropped from the model.

Table 5. Model 2 and variants, parameter estimates and inferences.

Model Random effects parameters `R AIC Contrast L p

Site Geologist

c0 c1 κ φ

2a αg,0 αg,1

0.0 6.63 2.5 4.73 0.0 0.0217 −117.18 246.36 1c vs. 2a 65.1 < 10−15

2b σ 2
g,1

σ 2
g,2

σ 2
g,3

σ 2
g,4

0.0 7.53 2.5 4.59 4.44 2.25 1.32 0.46 −144.16 304.31 1c vs. 2b 11.2 0.01

2c∗ αg,1,1 αg,1,2 αg,1,3 αg,1,4

0.0 6.72 2.5 4.58 0.022 0.021 0.030 0.018 −116.63 257.26 2a vs.2c 1.1 0.98

2b vs. 2c 55.1 < 10−10

∗ In this model, a separate slope and intercept to compute the between-geologist variance as a function of distance to the nearest borehole was computed for each level of

experience. All estimates of the intercept were zero exactly, so only the slopes are reported here.

The probability of meeting the specification given some k

can then be estimated as nk/10 000.

4 Results

4.1 Summary statistics on model error from

all validation sites

Figure 2 shows a scatter plot of interpreted and observed

heights of the base of the London Clay for all observations

of cross-section error. The points are scattered around the bi-

sector (where observed and interpreted heights are equal),

and there is no visual evidence of a systematic bias. Ta-

ble 3 shows the summary statistics of cross-section error, and

Fig. 3 shows the histogram of this variable. The symmetrical

form of the histogram and the weak skewness and kurtosis

values suggest that an assumption of normality is plausible

for the analysis of these data. They also suggest that, if there

is any systematic tendency for the base of the London Clay

to be interpreted too high or too low, then this effect is small.

4.2 Model comparisons

The results for model 1a and its variants are shown in Ta-

ble 4. Note that the estimated between-batch variance is zero.

When a REML estimate of a parameter is at the boundary of

parameter space, as here, it is advisable to examine the like-

lihood profile in the vicinity of the estimate. To compute the

likelihood profile for a model parameter, that parameter is

fixed at a series of values and, for each, the remaining pa-

rameters are estimated by maximum (residual) likelihood.

The maximised likelihoods are then plotted against the val-

ues of the parameter of interest. The profile likelihood should

increase smoothly towards the estimated value. The profile

likelihood for the batch variance satisfied this requirement.

This is not unreasonable; because the batches were formed

at random, we would hope that the between-batch variation

is purely explicable in terms of sampling error. The compari-

son of models 1a and 1b can be done by examining the AIC,

which is smaller for the latter model, in which the batch ef-

fect is dropped. Model 1b is therefore selected over 1a. The

profile likelihood for the uncorrelated between-site variance

in these models, c0, also approached the estimated value, 0.0,

smoothly.
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Table 6. Summary of model comparisons. In each case, the first-named simpler “null” model is compared with a more complex alternative,

either on the log-likelihood ratio L or Akaike’s information criterion (AIC). The key conclusion from the comparison is indicated.

Models Criterion for Selected Conclusion

Null model comparison model

1b 1a AIC 1b Batch effect can be dropped.

1c 1b L 1c Correlation of geologist errors can be dropped.

1c 1d L 1c No evidence that between-site variance depends on the distance to the nearest borehole.

1c 2a L 2a Evidence that between-geologist variance depends on the distance to the nearest available borehole.

1c 2b L 2b Evidence that between-geologist variance depends on the geologist’s experience.

2b 2c L 2c Evidence that the relationship between between-geologist variance and experience

depends on the distance to the nearest available borehole.

2a 2c L 2a No evidence that adding modeller experience improves the model, with the distance to the nearest

available borehole already included.

Table 7. Estimate of the mean cross-section error conditional on

model 2a.

Estimated mean 0.52

Standard error 0.42

Wald statistic∗ 1.56

p value 0.21

∗ The Wald statistic tests the null

hypothesis that the true mean error

is zero. The p value is the

probability of obtaining a Wald

statistic this large or larger under

the null hypothesis.

In model 1c, the correlation between within-site effects for

particular geologists is dropped (set to zero). The maximum

likelihood is slightly smaller than for model 1b, in which

this parameter is estimated. However, the log-likelihood ra-

tio statistic, L, for the comparison of (null) model 1c with

(the full) model 1b is small, and the probability of obtain-

ing a value of L this large or larger under the null model is

large, and so the more complex model is rejected in favour of

the null one. This is also consistent with the small estimated

value of this correlation, −0.09.

In model 1d, a stationary correlated variance for the

between-site effect (as in model 1c) is replaced by two pa-

rameters for a linear function which expresses this variance

as a function of distance to the nearest borehole available

for interpretation. This (full) model can be compared with

a (null) model (1c) with a stationary variance by the log-

likelihood ratio test. Once again, L is too small to support

a choice of the more complex model.

In summary, the consideration of model 1a and its vari-

ants in Table 4 leads us to the selection of model 1c (smallest

AIC in the table), in which the batch effect and the correla-

tion parameter ρ for geologist effects are dropped, and the

between-site variation is modelled as a stationary correlated

random variable.

Table 5 shows results for model 2a and its variants. These

models are based on 1c, but differ in that, rather than as-

suming a stationary geologist effect, the between-geologist

within-site variance is modelled as a function of covariates.

In model 2a, the geologist variance is modelled as a linear

function of distance to the nearest borehole available to the

geologist for interpretation. The zero value of the intercept,

αg,0, is plausible, under the assumption implicit in our anal-

ysis that the borehole data are correct, and the cross-section

error should be zero at the location of a borehole. The posi-

tive value of αg,1 implies that the geologist variance increases

with increasing distance from a borehole, which is also plau-

sible. Model 1c can be regarded as nested within 2a, a null

model with αg,0 equivalent to σ 2
g and αg,1 = 0. The mod-

els can be tested by the log-likelihood ratio statistic; Table 5

shows that the null model (1c) can be decisively rejected in

favour of the full model 2a.

Model 2b is an alternative to 2a, in which the geologist

variance depends on the self-identified experience of the ge-

ologist in 3-D modelling. The estimated parameters in Ta-

ble 5 are plausible in that the variance is largest for geol-

ogists who identified themselves as having “no experience

of modelling in 3-D” and smallest for those who identified

themselves as having “substantial experience of more than

2 years of modelling independently.” Once again, this model

could be compared with 1c by a log-likelihood ratio test, and

the null model (1c) can be rejected, indicating that there is

significant evidence for differences in geologist variance, re-

lated to geologist experience. However, the evidence for this

model is weaker than for 2a.

In model 2c different relationships between geologist vari-

ance and distance to nearest borehole were fitted for the four

levels of geological experience. In the fitted model the inter-

cepts were all zero, the smallest slope is for the geologists

with the highest experience level. However, while the log-

likelihood ratio test shows that model 2c is significantly bet-

ter than model 2b (i.e. adding the information on distance to

nearest borehole to a model with geologist experience gives
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Figure 2. All validation observations of the interpreted and ob-

served height of the base of the London Clay AOD. The red line

is the bisector.

Figure 3. Histogram of cross-section errors.

a significant improvement), the comparison of model 2c with

2a leads to the conclusion that adding geologist experience to

a model which already has the distance to nearest borehole

incorporated does not give a significant improvement. On the

basis of the AIC, model 2a is preferred among all those con-

sidered in this study. Table 6 summarises all the key compar-

isons between models and the inferences which arise from

these comparisons.

Table 7 shows the estimated mean cross-section error and

its standard error, under model 2a. The Wald statistic (e.g.

Dobson, 1990) is a test of the null hypothesis that the mean

Figure 4. 95 % probability interval for simulated cross-section er-

rors conditional on the location of the nearest borehole (red symbol)

and model 2a. Note that these are evaluated at discrete locations.

error is zero, and the large p value shows that this cannot be

rejected, so the data provide no evidence for systematic bias

in the interpretation. Note that the estimate of mean error is

rather less than the average for all observations reported in

Table 3. That is because (i) the mean reported in Table 6 is

the model mean, the fitted effect in the underlying statisti-

cal model for cross-section error, and (ii) the original data

were not a random sample in space, and show some local

clustering which is likely to bias the arithmetic average as an

estimate of the spatial mean of cross-section error.

Fig. 4 shows the 95 % probability interval for cross-section

errors along the section, approximated by the 2.5th and

97.5th percentiles of the conditionally simulated errors. The

red symbols show the locations of the boreholes. There are

two features of the interval. First, there is a rapid narrowing

near the boreholes (the interval is zero at the boreholes, but

this is only seen if the borehole coincides with a point where

the error is sampled). This arises from the spatial correlation

of the between-site component of cross-section error. The

second feature is a gradual widening of the interval to a lo-

cal maximum at the midpoint between successive boreholes.

This is particularly apparent in the second half of the plot.

This arises from the dependence of the between-modeller ef-

fect on the distance to the nearest borehole, showing how

the constraint of the borehole on model error decays with

distance. In Fig. 5, the confidence intervals are added to the

interpretation of the base of the London Clay by one of the

modellers.

Fig. 6 shows a plot of the estimated probability that a tun-

nel built km above the interpreted base of the London Clay

will intrude on the underlying Lambeth Group over no more

than 1 % of its length for different values of k. This shows
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Figure 5. One geologist’s interpretation of the base of the London

Clay (red) with 95 % confidence intervals (blue).

that the engineer can be 90 % confident that this specifica-

tion will be met if the route is a little less than 8 m above the

interpreted base.

5 Conclusions

Both the summary statistics and the scatter plot (Fig. 1), and

the estimate of the mean cross-section error from the selected

model 2a (Table 7), show that the data obtained in this study

provide no evidence that there is any bias in the interpretation

of the base of the London Clay by the geologists in this study;

i.e. the mean error is not significantly different from zero.

We established this experiment to test the hypothesis that

the variability of the error of interpretations of cross sections

varies spatially. This hypothesis has been supported. First,

we found that there is spatial dependence in the variability

of the between-site component of cross-section error. This is

to say that the cross-section error at one location is likely to

be more strongly correlated with the error at a nearby loca-

tion than at one farther away. This is reasonable, since if, for

example, a surface tends to be interpreted as being too high

above the Ordnance Datum at a site, perhaps because of fault-

ing, then it is likely that a similar error will occur at nearby

sites. There was no evidence, however, that the between-site

variance depends on the distance to the nearest borehole.

The between-geologist variance is rather smaller than the

between-site variance (compare c0 with σ 2
g in model 1c).

However, there was evidence that the variance of this error

depends on geologist experience and also on the distance to

the nearest borehole available for interpretation. The results

for these two models are consistent with our hypothesis, and

also make intuitive sense in that the variance of cross-section

Figure 6. How close to the modelled base of the London Clay could

you build a tunnel (over the last 4 km of the cross section) and have

a specified probability (ordinate) that the tunnel will stray into the

underlying Lambeth Group for no more than 1 % of its length?

error declines with the geologist’s experience, and increases

with increasing distance from the borehole. However, the

preferred model for the data, given a penalty on model com-

plexity, considers only the distance to nearest borehole. It is

interesting to note that our results on how model uncertainty

increases with distance to constraining interpretation bore-

holes, and the effect of modeller experience, are consistent

with the opinions on sources of uncertainty that have been

elicited in published studies (e.g. Lelliott et al., 2009). This

study provides empirical evidence for these opinions, and a

direct quantification of the effects.

The fitted model can be used to simulate cross-section er-

rors, conditional on a distribution of boreholes. One may

use this procedure to compute confidence intervals around

the interpreted cross section which quantifies uncertainty in

this interpretation and shows how this changes in space. One

could also use this simulation method to study the propaga-

tion of cross-section error in further processing to interpolate

the surface into 2-D, and so produce 3-D volumes.

The methodology presented in this paper could be de-

ployed in a wider range of geological settings in order to

generate statistical models of cross-section error for those

settings. These could then be used to compute confidence in-

tervals for new models or measures of uncertainty specific to

the requirements of particular data users, such as the example

for the London Clay illustrated in Fig. 5.

The experimental design used in this study allowed us

to make best use of somewhat sparse boreholes by examin-

ing multiple geologist interpretations at each validation site.

www.solid-earth.net/5/1189/2014/ Solid Earth, 5, 1189–1203, 2014
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However, if there had been a significant correlation between

within-site effects for the same geologist, then subsequent

modelling of the geologist variance would have been com-

plicated. Alternatively, one might use an experimental design

in which validation sites are nested within modellers (so each

modeller has a unique batch of validation sites). This requires

there to be many boreholes available, however, since each

validation borehole is compared with just one interpretation.

It also reduces the information that we obtain on between-

modeller differences.

One way to get around the problem of insufficient valida-

tion observations is to generate synthetic cross sections, per-

haps conditioned on geophysical data such as interpretations

from seismic lines. These synthetic cross sections can then

be notionally sampled at as many locations as we want to

provide synthetic borehole data for interpretation and valida-

tion. In such an experiment, the syntheticvalidationboreholes

should be sampled according to an optimised design (e.g.

Lark, 2002) to ensure good estimation of the spatial variance

parameters and to give good coverage of possible covariates,

e.g. spanning a range of distances to the nearest borehole

available for interpretation.
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