13 research outputs found

    Why are flare ribbons associated with the spines of magnetic null points generically elongated?

    Get PDF
    Coronal magnetic null points exist in abundance as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, that can be analysed using the `squashing factor', QQ. In this paper we make a detailed analysis of the distribution of QQ in the presence of magnetic nulls. While QQ is formally infinite on both the spine and fan of the null, the decay of QQ away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, QQ decays most slowly away from the spine/fan in the direction in which B|{\bf B}| increases most slowly. In particular, this demonstrates that the extended, elliptical high-QQ halo around the spine footpoints observed by Masson et al. (Astrophys. J., 700, 559, 2009) is a generic feature. This extension of the QQ halos around the spine/fan footpoints is important for diagnosing the regions of the photosphere that are magnetically connected to any current layer that forms at the null. In light of this, we discuss how our results can be used to interpret the geometry of observed flare ribbons in `circular ribbon flares', in which typically a coronal null is implicated. We conclude that both the physics in the vicinity of the null and how this is related to the extension of QQ away from the spine/fan can be used in tandem to understand observational signatures of reconnection at coronal null points.Comment: Pre-print version of article accepted for publication in Solar Physic

    Long-term safety and efficacy of Eculizumab in Aquaporin-4 IgG-positive NMOSD

    Get PDF
    Objective During PREVENT (NCT01892345), eculizumab significantly reduced relapse risk versus placebo in patients with aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG+ NMOSD). We report an interim analysis of PREVENT's ongoing open-label extension (OLE; NCT02003144) evaluating eculizumab's long-term safety and efficacy. Methods Patients who completed PREVENT could enroll in the OLE to receive eculizumab (maintenance dose = 1,200 mg/2 weeks, after a blinded induction phase). Safety and efficacy data from PREVENT and its OLE (interim data cut, July 31, 2019) were combined for this analysis. Results Across PREVENT and the OLE, 137 patients received eculizumab and were monitored for a median (range) of 133.3 weeks (5.1–276.9 weeks), for a combined total of 362.3 patient-years (PY). Treatment-related adverse event (AE) and serious adverse event (SAE) rates were 183.5 in 100 PY and 8.6 in 100 PY, respectively. Serious infection rates were 10.2 in 100 PY in eculizumab-treated patients versus 15.1 in 100 PY in the PREVENT placebo group. No patient developed a meningococcal infection. At 192 weeks (3.7 years), 94.4% (95% confidence interval [CI], 88.6–97.3) of patients remained adjudicated relapse-free. The adjudicated annualized relapse rate was 0.025 (95% CI = 0.013–0.048) in all eculizumab-treated patients versus 0.350 (95% CI = 0.199–0.616) in the PREVENT placebo group. During the OLE, 37% of patients (44 of 119 patients) stopped or decreased background immunosuppressive therapy use. Interpretation This analysis demonstrates that eculizumab's long-term safety profile in NMOSD is consistent with its established profile across other indications. This analysis also demonstrated the sustained ability of long-term eculizumab treatment to reduce relapse risk in patients with AQP4-IgG+ NMOSD. ANN NEUROL 2021;89:1088–109

    Local Medicinal Plant Knowledge in South Africa Preserved by Apartheid

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Observations of a hybrid double-streamer/pseudostreamer in the solar corona

    Get PDF
    We report on the first observation of a single hybrid magnetic structure that contains both a pseudostreamer and a double streamer. This structure was originally observed by the SWAP instrument on board the PROBA2 satellite between 2013 May 5 and 10. It consists of a pair of filament channels near the south pole of the Sun. On the western edge of the structure, the magnetic morphology above the filaments is that of a side-by-side double streamer, with open field between the two channels. On the eastern edge, the magnetic morphology is that of a coronal pseudostreamer without the central open field. We investigated this structure with multiple observations and modeling techniques. We describe the topology and dynamic consequences of such a unified structure

    The solar cycle variation of topological structures in the global solar corona

    Get PDF
    Context. The complicated distribution of magnetic flux across the solar photosphere results in a complex web of coronal magnetic field structures. To understand this complexity, the magnetic skeleton of the coronal field can be calculated. The skeleton highlights the (separatrix) surfaces that divide the field into topologically distinct regions, allowing open-field regions on the solar surface to be located. Furthermore, separatrix surfaces and their intersections with other separatrix surfaces (i.e., separators) are important likely energy release sites. Aims. The aim of this paper is to investigate, throughout the solar cycle, the nature of coronal magnetic-field topologies that arise under the potential-field source-surface approximation. In particular, we characterise the typical global fields at solar maximum and minimum. Methods. Global magnetic fields are extrapolated from observed Kitt Peak and SOLIS synoptic magnetograms, from Carrington rotations 1645 to 2144, using the potential-field source-surface model. This allows the variations in the coronal skeleton to be studied over three solar cycles. Results. The main building blocks which make up magnetic fields are identified and classified according to the nature of their separatrix surfaces. The magnetic skeleton reveals that, at solar maximum, the global coronal field involves a multitude of topological structures at all latitudes criss-crossing throughout the atmosphere. Many open-field regions exist originating anywhere on the photosphere. At solar minimum, the coronal topology is heavily influenced by the solar magnetic dipole. A strong dipole results in a simple large-scale structure involving just two large polar open-field regions, but, at short radial distances between ± 60° latitude, the small-scale topology is complex. If the solar magnetic dipole if weak, as in the recent minimum, then the low-latitude quiet-sun magnetic fields may be globally significant enough to create many disconnected open-field regions between ± 60° latitude, in addition to the two polar open-field regions
    corecore