45 research outputs found

    A Global Map Of Species Terrestrial Habitat Types

    Get PDF
    The loss of species habitat - described as the entirety of the physical conditions, e.g. land cover and climate - is one of the primary causes of biodiversity decline globally. Knowledge about species habitats is critical to design landscape management plans and conservation prioritizations. Here, we provide a global spatial-explicit characterization of 47 terrestrial habitat types directly relevant to biodiversity conservation. These habitat types broadly follow the standard habitat classification system defined by the International Union for Conservation of Nature (IUCN), which is widely used for assessments of species extinction risk. This habitat type map was produced by intersecting currently best available data on land-cover, climate and land use from a variety of ancillary datasets. We furthermore validate this map using independently derived estimates of observed habitats from biodiversity occurrence records. Overall, these data broaden our knowledge of habitat types globally and will be highly useful for broad-scale ecological studies and a spatial guide for upcoming IUCN redlist assessments. We hope that this data will spur further development of biodiversity-relevant habitat type maps on a global scale

    Micro-evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion

    Get PDF
    Almost 90% of global bird extinctions have occurred on islands. The loss of endemic spe- cies from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th cen- tury, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced coloni- zation by highly invasive parrots, such as the Ring-necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in spe- cies composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmen- tal and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Sey- chelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non-endemic invasive forms such as the Ring-necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appro- priate ecological replacements for the extinct parrots. Such replacements may be intro- duced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity

    A global map of terrestrial habitat types

    Get PDF
    We provide a global, spatially explicit characterization of 47 terrestrial habitat types, as defined in the International Union for Conservation of Nature (IUCN) habitat classification scheme, which is widely used in ecological analyses, including for quantifying species’ Area of Habitat. We produced this novel habitat map for the year 2015 by creating a global decision tree that intersects the best currently available global data on land cover, climate and land use. We independently validated the map using occurrence data for 828 species of vertebrates (35152 point plus 8181 polygonal occurrences) and 6026 sampling sites. Across datasets and mapped classes we found on average a balanced accuracy of 0.77 (+¯0.14 SD) at Level 1 and 0.71 (+¯0.15 SD) at Level 2, while noting potential issues of using occurrence records for validation. The maps broaden our understanding of habitats globally, assist in constructing area of habitat refinements and are relevant for broad-scale ecological studies and future IUCN Red List assessments. Periodic updates are planned as better or more recent data becomes available

    Using the IUCN Red List to map threats to terrestrial vertebrates at global scale

    Get PDF
    The Anthropocene is characterized by unparalleled human impact on other species, potentially ushering in the sixth mass extinction. Yet mitigation efforts remain hampered by limited information on the spatial patterns and intensity of the threats driving global biodiversity loss. Here we use expert-derived information from the International Union for Conservation of Nature Red List on threats to 23,271 species, representing all terrestrial amphibians, birds and mammals, to generate global maps of the six major threats to these groups: agriculture, hunting and trapping, logging, pollution, invasive species, and climate change. Our results show that agriculture and logging are pervasive in the tropics and that hunting and trapping is the most geographically widespread threat to mammals and birds. Additionally, current representations of human pressure underestimate the overall pressure on biodiversity, due to the exclusion of threats such as hunting and climate change. Alarmingly, this is particularly the case in areas of the highest biodiversity importance

    Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure

    Get PDF
    Illegal hunting is a persistent problem in many protected areas, but an overview of the extent of this problem and its impact on wildlife is lacking. We reviewed 40 years (1980–2020) of global research to examine the spatial distribution of research and socio-ecological factors influencing population decline within protected areas under illegal hunting pressure. From 81 papers reporting 988 species/site combinations, 294 mammal species were reported to have been illegally hunted from 155 protected areas across 48 countries. Research in illegal hunting has increased substantially during the review period and showed biases towards strictly protected areas and the African continent. Population declines were most frequent in countries with a low human development index, particularly in strict protected areas and for species with a body mass over 100 kg. Our results provide evidence that illegal hunting is most likely to cause declines of large-bodied species in protected areas of resource-poor countries regardless of protected area conservation status. Given the growing pressures of illegal hunting, increased investments in people’s development and additional conservation efforts such as improving anti-poaching strategies and conservation resources in terms of improving funding and personnel directed at this problem are a growing priority

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe

    Bending the curve of terrestrial biodiversity needs an integrated strategy

    Get PDF
    Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether—and how—humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042–2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34–50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats—such as climate change—must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy

    Extreme sequential polyandry insures against nest failure in a frog

    No full text
    Sequential polyandry may evolve as an insurance mechanism to reduce the risk of choosing a mate that is infertile, closely related, genetically inferior or incompatible, but polyandry also might insure against nest failure in unpredictable environments. Most animals are oviparous, and in species where males provide nest sites whose quality varies substantially and unpredictably, polyandrous females might insure offspring success by distributing their eggs across multiple nests. Here, we test this hypothesis in a wild population of an Australian terrestrial toadlet, a polyandrous species, where males construct nests and remain with broods. We found that females partitioned their eggs across the nests of two to eight males and that more polyandrous females gained a significant increase in mean offspring survivorship. Our results provide evidence for the most extreme case of sequential polyandry yet discovered in a vertebrate and also suggest that insurance against nest failure might favour the evolution of polyandry. We propose that insurance against nest failure might be widespread among oviparous taxa and provide an important explanation for the prevalence of sequential polyandry in nature

    A host-race of the cuckoo Cuculus canorus with nestlings attuned to the parental alarm calls of the host species

    No full text
    The common cuckoo has several host-specific races, each with a distinctive egg that tends to match its host's eggs. Here, we show that the host-race specializing on reed warblers also has a host-specific nestling adaptation. In playback experiments, the nestling cuckoos responded specifically to the reed warbler's distinctive ‘churr’ alarm (given when a predator is near the nest), by reducing begging calls (likely to betray their location) and by displaying their orange-red gape (a preparation for defence). When reed warbler-cuckoos were cross-fostered and raised by two other regular cuckoo hosts (robins or dunnocks), they did not respond to the different alarms of these new foster-parents. Instead, they retained a specific response to reed warbler alarms but, remarkably, increased both calling and gaping. This suggests innate pre-tuning to reed warbler alarms, but with exposure necessary for development of the normal silent gaping response. By contrast, cuckoo chicks of another host-race specializing on redstarts showed no response to either redstart or reed warbler alarms. If host-races are restricted to female cuckoo lineages, then chick-tuning in reed warbler-cuckoos must be under maternal control. Alternatively, some host-races might be cryptic species, not revealed by the neutral genetic markers studied so far
    corecore