274 research outputs found

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    On Fourier transforms of radial functions and distributions

    Full text link
    We find a formula that relates the Fourier transform of a radial function on Rn\mathbf{R}^n with the Fourier transform of the same function defined on Rn+2\mathbf{R}^{n+2}. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r)f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function tf(t)t\to f(|t|) and the two-dimensional function (x1,x2)f((x1,x2))(x_1,x_2)\to f(|(x_1,x_2)|). We prove analogous results for radial tempered distributions.Comment: 12 page

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    Universal Behavior of Charged Particle Production in Heavy Ion Collisions

    Full text link
    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.Comment: 4 Pages, 5 Figures, contributed to the Proceedings of Quark Matter 2002, Nantes, France, 18-24 July 200

    Pulsations and eclipse-time analysis of HW Vir

    Get PDF
    We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O–C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M⊙, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 µHz, with the majority of peaks found below 2600 µHz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit

    Recent Results from PHOBOS at RHIC

    Full text link
    The PHOBOS experiment at RHIC has recorded measurements for Au-Au collisions spanning nucleon-nucleon center-of-mass energies from 19.6 GeV to 200 GeV. Global observables such as elliptic flow and charged particle multiplicity provide important constraints on model predictions that characterize the state of matter produced in these collisions. The nearly 4 pi acceptance of the PHOBOS experiment provides excellent coverage for complete flow and multiplicity measurements. Results including beam energy and centrality dependencies are presented and compared to elementary systems.Comment: 4 pages, 4 figures, proceedings from PANIC02 in Osaka, Japa

    Global Observations from PHOBOS

    Full text link
    Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies. Three empirical observations have emerged from this dataset which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au+Au collisions, when expressed as dN/dηdN/d\eta' (ηηybeam\eta' \equiv \eta-y_{beam}), becomes energy independent at high energy for a broad region of η\eta' around η=0\eta'=0. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in e+e- and Au+Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in e+e- and in scaled Au+Au. This observation was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for Npart>65N_{part}>65. This scaling occurs both for the total multiplicity and for high \pT particles (3 <\pT< 4.5 GeV/c).Comment: QM2002 plenary talk, 10 pages, 11 figure
    corecore