54 research outputs found

    Molecular mechanisms linking high body mass index to breast cancer etiology in post-menopausal breast tumor and tumor-adjacent tissues

    Get PDF
    Purpose: In post-menopausal women, high body mass index (BMI) is an established breast cancer risk factor and is associated with worse breast cancer prognosis. We assessed the associations between BMI and gene expression of both breast tumor and adjacent tissue in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER−) diseases to help elucidate the mechanisms linking obesity with breast cancer biology in 519 post-menopausal women from the Nurses’ Health Study (NHS) and NHSII. Methods: Differential gene expression was analyzed separately in ER+ and ER− disease both comparing overweight (BMI ≥ 25 to &lt; 30) or obese (BMI ≥ 30) women to women with normal BMI (BMI< 25), and per 5 kg/m 2 increase in BMI. Analyses controlled for age and year of diagnosis, physical activity, alcohol consumption, and hormone therapy use. Gene set enrichment analyses were performed and validated among a subset of post-menopausal cases in The Cancer Genome Atlas (for tumor) and Polish Breast Cancer Study (for tumor-adjacent). Results: No gene was differentially expressed by BMI (FDR < 0.05). BMI was significantly associated with increased cellular proliferation pathways, particularly in ER+ tumors, and increased inflammation pathways in ER− tumor and ER− tumor-adjacent tissues (FDR < 0.05). High BMI was associated with upregulation of genes involved in epithelial-mesenchymal transition in ER+ tumor-adjacent tissues. Conclusions: This study provides insights into molecular mechanisms of BMI influencing post-menopausal breast cancer biology. Tumor and tumor-adjacent tissues provide independent information about potential mechanisms

    Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies

    Get PDF
    Background: Insulin-like growth factor 1 (IGF1) stimulates mitosis and inhibits apoptosis. Some published results have shown an association between circulating IGF1 and breast-cancer risk, but it has been unclear whether this relationship is consistent or whether it is modified by IGF binding protein 3 (IGFBP3), menopausal status, oestrogen receptor status or other factors. The relationship of IGF1 (and IGFBP3) with breast-cancer risk factors is also unclear. The Endogenous Hormones and Breast Cancer Collaborative Group was established to analyse pooled individual data from prospective studies to increase the precision of the estimated associations of endogenous hormones with breast-cancer risk. Methods: Individual data on prediagnostic IGF1 and IGFBP3 concentrations were obtained from 17 prospective studies in 12 countries. The associations of IGF1 with risk factors for breast cancer in controls were examined by calculating geometric mean concentrations in categories of these factors. The odds ratios (ORs) with 95% CIs of breast cancer associated with increasing IGF1 concentrations were estimated by conditional logistic regression in 4790 cases and 9428 matched controls, with stratification by study, age at baseline, and date of baseline. All statistical tests were two-sided, and a p value of less than 0\ub705 was considered significant. Findings: IGF1 concentrations, adjusted for age, were positively associated with height and age at first pregnancy, inversely associated with age at menarche and years since menopause, and were higher in moderately overweight women and moderate alcohol consumers than in other women. The OR for breast cancer for women in the highest versus the lowest fifth of IGF1 concentration was 1\ub728 (95% CI 1\ub714-1\ub744; p&lt;0\ub70001). This association was not altered by adjusting for IGFBP3, and did not vary significantly by menopausal status at blood collection. The ORs for a difference in IGF1 concentration between the highest and lowest fifth were 1\ub738 (95% CI 1\ub714-1\ub768) for oestrogen-receptor-positive tumours and 0\ub780 (0\ub757-1\ub713) for oestrogen-receptor-negative tumours (p for heterogeneity=0\ub7007). Interpretation: Circulating IGF1 is positively associated with breast-cancer risk. The association is not substantially modified by IGFBP3, and does not differ markedly by menopausal status, but seems to be confined to oestrogen-receptor-positive tumours

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits

    Reproductive aging-associated common genetic variants and the risk of breast cancer

    Get PDF
    Introduction: A younger age at menarche and an older age at menopause are well established risk factors for breast cancer. Recent genome-wide association studies have identified several novel genetic loci associated with these two traits. However, the association between these loci and breast cancer risk is unknown.Methods: In this study, we investigated 19 and 17 newly identified single nucleotide polymorphisms (SNPs) from the ReproGen Consortium that have been associated with age at menarche and age at natural menopause, respectively, and assessed their associations with breast cancer risk in 6 population-based studies among up to 3,683 breast cancer cases and 34,174 controls in white women of European ancestry. In addition, we used these SNPs to calculate genetic risk scores (GRSs) based on their associations with each trait.Results: After adjusting for age and potential population stratification, two age at menarche associated SNPs (rs1079866 and rs7821178) and one age at natural menopause associated SNP (rs2517388) were associated with breast cancer risk (p values, 0.003, 0.009 and 0.023, respectively). The odds ratios for breast cancer corresponding to per-risk-allele were 1.14 (95% CI, 1.05 to 1.24), 1.08 (95% CI, 1.02 to 1.15) and 1.10 (95% CI, 1.01 to 1.20), respectively, and were in the direction predicted by their associations with age at menarche or age at natural menopause. These associations did not appear to be attenuated by further controlling for self-reported age at menarche, age at natural menopause, or known breast cancer susceptibility loci. Although we did not observe a statistically significant association between any GRS for reproductive aging and breast cancer risk, the 4 th and 5 th highest quintiles of the younger age at menarche GRS had odds ratios of 1.14 (95% CI, 1.01 to 1.28) and 1.13 (95% CI, 1.00 to 1.27), respectively, compared to the lowest quintile.Conclusions: Our study suggests that three genetic variants, independent of their associations with age at menarche or age at natural menopause, were associated with breast cancer risk and may contribute modestly to breast cancer risk prediction; however, the combination of the 19 age at

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P&lt;10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P&lt;5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health

    A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry

    Get PDF
    Background Genome-wide studies of gene–environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. Methods Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene–environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. Results Assuming a 1 × 10–5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92–0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88–0.94). Conclusions Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers

    No full text
    This study investigated the relationship between physical activity and the obesity-related inflammatory markers C-reactive protein, interleukin-6, and soluble tumor necrosis factor receptors (sTNF-Rs) 1 and 2. Furthermore, we examined the relationship between physical activity and insulin sensitivity (insulin, C-peptide, and hemoglobin A(1c) levels) and whether inflammatory markers mediate this association
    corecore