16 research outputs found

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    A mixture model approach for the analysis of small exploratory microarray experiments

    No full text
    The microarray is an important and powerful tool for prescreening of genes for further research. However, alternative solutions are needed to increase power in small microarray experiments. Use of traditional parametric and even non-parametric tests for such small experiments lack power and have distributional problems. A mixture model is described that is performed directly on expression differences assuming that genes in alternative treatments are expressed or not in all combinations (i) not expressed in either condition, (ii) expressed only under the first condition, (iii) expressed only under the second condition, and (iv) expressed under both conditions, giving rise to 4 possible clusters with two treatments. The approach is termed a Mean-Difference-Mixture-Model (MD-MM) method. Accuracy and power of the MD-MM was compared to other commonly used methods, using both simulations, microarray data, and quantitative real time PCR (qRT-PCR). The MD-MM was found to be generally superior to other methods in most situations. The advantage was greatest in situations where there were few replicates, poor signal to noise ratios, or non-homogeneous variances.
    corecore