967 research outputs found
Calculation of Forces at Focal Adhesions from Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization
AbstractForces exerted by stationary cells have been investigated on the level of single focal adhesions by combining elastic substrates, fluorescence labeling of focal adhesions, and the assumption of localized force when solving the inverse problem of linear elasticity theory. Data simulation confirms that the inverse problem is ill-posed in the presence of noise and shows that in general a regularization scheme is needed to arrive at a reliable force estimate. Spatial and force resolution are restricted by the smoothing action of the elastic kernel, depend on the details of the force and displacement patterns, and are estimated by data simulation. Corrections arising from the spatial distribution of force and from finite substrate size are treated in the framework of a force multipolar expansion. Our method is computationally cheap and could be used to study mechanical activity of cells in real time
BFV-complex and higher homotopy structures
We present a connection between the BFV-complex (abbreviation for
Batalin-Fradkin-Vilkovisky complex) and the so-called strong homotopy Lie
algebroid associated to a coisotropic submanifold of a Poisson manifold. We
prove that the latter structure can be derived from the BFV-complex by means of
homotopy transfer along contractions. Consequently the BFV-complex and the
strong homotopy Lie algebroid structure are quasi-isomorphic and
control the same formal deformation problem.
However there is a gap between the non-formal information encoded in the
BFV-complex and in the strong homotopy Lie algebroid respectively. We prove
that there is a one-to-one correspondence between coisotropic submanifolds
given by graphs of sections and equivalence classes of normalized Maurer-Cartan
elemens of the BFV-complex. This does not hold if one uses the strong homotopy
Lie algebroid instead.Comment: 50 pages, 6 figures; version 4 is heavily revised and extende
Inconsistent patterns of body size evolution in co-occurring island reptiles
Aim
Animal body sizes are often remarkably variable across islands, but despite much research we still have a poor understanding of both the patterns and the drivers of body size evolution. Theory predicts that interspecific competition and predation pressures are relaxed on small, remote islands, and that these conditions promote body size evolution. We studied body size variation across multiple insular populations of 16 reptile species coâoccurring in the same archipelago and tested which island characteristics primarily drive body size evolution, the nature of the common patterns, and whether coâoccurring species respond in a similar manner to insular conditions.
Location
Aegean Sea islands.
Time period
1984â2016.
Major taxa studied
Reptiles.
Methods
We combined fieldwork, museum measurements and a comprehensive literature survey to collect data on nearly 10,000 individuals, representing eight lizard and eight snake species across 273 islands. We also quantified a large array of predictors to assess directly the effects of island area, isolation (both spatial and temporal), predation and interspecific competition on body size evolution. We used linear models and metaâanalyses to determine which predictors are informative for all reptiles, for lizards and snakes separately, and for each species.
Results
Body size varies with different predictors across the species we studied, and patterns differ within families and between lizards and snakes. Each predictor influenced body size in at least one species, but no general trend was recovered. As a group, lizards are hardly affected by any of the predictors we tested, whereas snake size generally increases with area and with competitor and predator richness, and decreases with isolation.
Main conclusions
No factor emerges as a predominant driver of Aegean reptile sizes. This contradicts theories of general body size evolutionary trajectories on islands. We conclude that overarching generalizations oversimplify patterns and processes of reptile body size evolution on islands. Instead, speciesâ autecology and island particularities interact to drive the course of size evolution
Configuration Of Grafted Polystyrene Chains In The Melt: Temperature And Concentration Dependence
The concentration profiles of carboxy-terminated polystyrene chains in the melt grafted onto oxide-covered silicon substrates were measured using secondary-ion mass spectroscopy. The grafting density increased with temperature and an enthalpy of +7.4 kcal/mole was deduced for the grafting reaction, SiOH + R(COOH) â R(COOSi) + H2O. Relatively high grafting densities (ÏâŒ6.6·mg/m2) were achieved with minimal chain distortion or displacement of long chains by shorter ones. Significant stretching of the grafted chains occurred for Ï > 10 mg/m2. An equilibrium constant for the grafting reaction incorporating entropy is discussed.69577677
Elastic interactions of active cells with soft materials
Anchorage-dependent cells collect information on the mechanical properties of
the environment through their contractile machineries and use this information
to position and orient themselves. Since the probing process is anisotropic,
cellular force patterns during active mechanosensing can be modelled as
anisotropic force contraction dipoles. Their build-up depends on the mechanical
properties of the environment, including elastic rigidity and prestrain. In a
finite sized sample, it also depends on sample geometry and boundary conditions
through image strain fields. We discuss the interactions of active cells with
an elastic environment and compare it to the case of physical force dipoles.
Despite marked differences, both cases can be described in the same theoretical
framework. We exactly solve the elastic equations for anisotropic force
contraction dipoles in different geometries (full space, halfspace and sphere)
and with different boundary conditions. These results are then used to predict
optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version,
accepted for publication in Phys. Rev.
Four graviton scattering amplitude from supersymmetric orbifold sigma model
In the IR limit the Matrix string theory is expected to be described by the
supersymmetric orbifold sigma model. Recently Dijkgraaf, Verlinde
and Verlinde proposed a vertex that may describe the type IIA string
interaction. In this paper using this interaction vertex we derive the four
graviton scattering amplitude from the orbifold model in the large limit.Comment: latex, 35 pages, misprints are corrected, the final version to appear
in Nucl.Phys.
Itinerant electron metamagnetism in LaCoSi
The strongly exchange enhanced Pauli paramagnet LaCoSi is found to
exhibit an itinerant metamagnetic phase transition with indications for
metamagnetic quantum criticality. Our investigation comprises magnetic,
specific heat, and NMR measurements as well as ab-initio electronic structure
calculations. The critical field is about 3.5 T for and 6 T for , which is the lowest value ever found for rare earth intermetallic
compounds. In the ferromagnetic state there appears a moment of about 0.2
/Co at the Co-sites, but sigificantly smaller moments at the 4d
and Co-sites.Comment: 11 pages, 5 figures, PRB Rapid Communication, in prin
Novae Ejecta as Colliding Shells
Following on our initial absorption-line analysis of fifteen novae spectra we
present additional evidence for the existence of two distinct components of
novae ejecta having different origins. As argued in Paper I one component is
the rapidly expanding gas ejected from the outer layers of the white dwarf by
the outburst. The second component is pre-existing outer, more slowly expanding
circumbinary gas that represents ejecta from the secondary star or accretion
disk. We present measurements of the emission-line widths that show them to be
significantly narrower than the broad P Cygni profiles that immediately precede
them. The emission profiles of novae in the nebular phase are distinctly
rectangular, i.e., strongly suggestive of emission from a relatively thin,
roughly spherical shell. We thus interpret novae spectral evolution in terms of
the collision between the two components of ejecta, which converts the early
absorption spectrum to an emission-line spectrum within weeks of the outburst.
The narrow emission widths require the outer circumbinary gas to be much more
massive than the white dwarf ejecta, thereby slowing the latter's expansion
upon collision. The presence of a large reservoir of circumbinary gas at the
time of outburst is suggestive that novae outbursts may sometime be triggered
by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than
steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in
Astrophysics & Space Scienc
Cosmological Creation of D-branes and anti-D-branes
We argue that the early universe may be described by an initial state of
space-filling branes and anti-branes. At high temperature this system is
stable. At low temperature tachyons appear and lead to a phase transition,
dynamics, and the creation of D-branes. These branes are cosmologically
produced in a generic fashion by the Kibble mechanism. From an entropic point
of view, the formation of lower dimensional branes is preferred and
brane-worlds are exponentially more likely to form than higher dimensional
branes. Virtually any brane configuration can be created from such phase
transitions by adjusting the tachyon profile. A lower bound on the number
defects produced is: one D-brane per Hubble volume.Comment: 30 pages, 5 eps figures; v2 more references added; v3 section 4
slightly improve
- âŠ