
BFV-COMPLEX AND HIGHER HOMOTOPY

STRUCTURES

FLORIAN SCHÄTZ

Abstract. We present a connection between the BFV-complex (ab-
breviation for Batalin-Fradkin-Vilkovisky complex) and the strong ho-
motopy Lie algebroid associated to a coisotropic submanifold of a Pois-
son manifold. We prove that the latter structure can be derived from
the BFV-complex by means of homotopy transfer along contractions.
Consequently the BFV-complex and the strong homotopy Lie algebroid
structure are L∞ quasi-isomorphic and control the same formal defor-
mation problem.

However there is a gap between the non-formal information encoded
in the BFV-complex and in the strong homotopy Lie algebroid respec-
tively. We prove that there is a one-to-one correspondence between
coisotropic submanifolds given by graphs of sections and equivalence
classes of normalized Maurer-Cartan elemens of the BFV-complex. This
does not hold if one uses the strong homotopy Lie algebroid instead.
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1. Introduction

The geometry of coisotropic submanifolds inside Poisson manifolds is a
very rich subject with connections to topics such as foliation theory, mo-
mentum maps, constrained systems and symplectic groupoids – see [W2] for
instance. Recently a new algebraic structure called the “strong homotopy
Lie algebroid” associated to such submanifolds has been investigated, e.g.
[OP] in the symplectic setting or [CF] in the Poisson case. This structure is
related to the deformation problem of a given coisotropic submanifold ([OP])
on the one hand and to the quantization of constrained systems ([CF]) on
the other. Moreover it captures subtle properties of the foliation associated
to a coisotropic submanifold ([Ki]).

The first main result of this paper is to reveal that the strong homotopy
Lie algebroid is in some sense equivalent to a construction known as the
BFV-complex – for a precise formulation see Theorem 5 in subsection 4.2.
The BFV-complex originated from physical considerations concerning the
quantization of field theories with so-called open gauge symmetries ([BF],
[BV]). It was given an interpretation in terms of homological algebra in
[Sta2] and globalized to coisotropic submanifolds of arbitrary finite dimen-
sional Poisson manifolds in [B] and [He].

Theorem 5 provides a connection between the BFV-complex and the
strong homotopy Lie algebroid. In fact, we show that the two structures
are isomorphic up to homotopy. In particular this implies (Corollary 4) that
the formal deformation problem associated to both structures is equivalent.

2



In [OP] this formal deformation problem was investigated in the setting of
the strong homotopy Lie algebroid (in the symplectic case).

Remarkably there is a gap between the strong homotopy Lie algebroid
and the BFV-complex in the non-formal regime: we present a simple ex-
ample of a coisotropic submanifold inside a Poisson manifold where the
strong homotopy Lie algebroid does not capture obstructions to deforma-
tions. However the BFV-complex always does, see Theorem 6 in subsection
5.2 for the precise statement. Hence the BFV-complex is able to capture
non-formal aspects of the geometry of coisotropic submanifolds. This is
also supported by the example considered in subsection 5.3 where the treat-
ment using the BFV-complex reproduces a criterion for finding coisotropic
submanifolds which was derived in [Z].

The paper is organized as follows: Section 2 collects known facts concern-
ing algebraic and geometric structures that are used in the main body of the
paper. In section 3 we present the global construction of the BFV-complex.
We mainly follow [Sta2], [B] and [He] there. The only original part is the
conceptual construction of the global BFV-bracket (see subsection 3.2). Sec-
tion 4 introduces the strong homotopy Lie algebroid and connects it to the
BFV-complex (Theorem 5). In section 5 we establish a link between the
BFV-complex and the geometry of coisotropic sections (Theorem 6) and
give an example to demonstrate that this link does not exist if one considers
the strong homotopy Lie algebroid instead. In the Appendix we give details
on the homotopy transfer along contraction data which is one of our main
tools. The material there is well known to the experts.

2. Preliminaries

For the convenience of the reader and in order to fix conventions we recall
some basic definitions and facts concerning L∞-algebras (subsection 2.1),
the derived brackets formalism (subsection 2.2), homotopy transfer of L∞-
algebras along contraction data (subsection 2.3), smooth graded manifolds
(subsection 2.4) and Poisson geometry (subsection 2.5). Readers familiar
with these topics might skip this section.

2.1. L∞-algebras. Let V be a Z-graded vector space over R (or any other
field of characteristic 0); i.e., V is a collection (Vi)i∈Z of vector spaces Vi
over R. Homogeneous elements of V of degree i ∈ Z are the elements of Vi.
We denote the degree of a homogeneous element x ∈ V by |x|. A morphism
f : V →W of graded vector spaces is a collection (fi : Vi →Wi)i∈Z of linear
maps. The nth suspension functor [n] from the category of graded vector
spaces to itself is defined as follows: given a graded vector space V , V [n]
denotes the graded vector space given by the collection V [n]i := Vn+i. The
nth suspension of a morphism f : V → W of graded vector spaces is given
by the collection (f [n]i := fn+i : Vn+i →Wn+i)i∈Z.
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One can consider the tensor algebra T (V ) associated to a graded vector
space V which is a graded vector space with components

T (V )m :=
⊕

k≥0

⊕

j1+···+jk=m

Vj1 ⊗ · · · ⊗ Vjk .

T (V ) naturally carries the structure of a cofree coconnected coassociative
coalgebra given by the deconcatenation coproduct:

∆(x1 ⊗ · · · ⊗ xn) :=

n
∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xn).

There are two natural representations of the symmetric group Σn on V ⊗n:
the even one which is defined by multiplication with the sign (−1)|a||b| for
the transposition interchanging homogeneous a and b in V and the odd one
by multiplication with the sign −(−1)|a||b| respectively. These two actions
naturally extend to T (V ). The fix point set of the first action on T (V ) is
denoted by S(V ) and called the graded symmetric algebra of V while the
fix point set of the latter action is denoted by Λ(V ) and called the graded
skew–symmetric algebra of V . The graded symmetric algebra S(V ) inherits
a coalgebra structure from T (V ) which is cofree coconnected coassociative
and graded cocommutative.

Let V be a graded vector space together with a family of linear maps

(mn : Sn(V ) → V [1])n∈N.

Given such a family one defines the associated family of Jacobiators

(Jn : Sn(V ) → V [2])n≥1

by

Jn(x1 · · · xn) :=

=
∑

r+s=n

∑

σ∈(r,s)−shuffles

sign(σ)ms+1(mr(xσ(1)⊗· · ·⊗xσ(r))⊗xσ(r+1)⊗· · ·⊗xσ(n))

where sign(·) is the Koszul sign, i.e., the one induced from the natural even
representation of Σn on T n(V ), and (r, s)-shuffles are permutations σ of
{1, . . . , n} such that σ(1) < · · · < σ(r) and σ(r + 1) < · · · < σ(n).

Definition 1. A family of maps (mn : Sn(V ) → V [1])n∈N defines the struc-
ture of an L∞[1]-algebra on the graded vector space V whenever the associ-
ated family of Jacobiators vanishes identically.

This definition is the one given in [V]. We remark that this definition
deviates from the classical notion of L∞-algebras (see [LSt] for instance)
in two points. First it makes use of the graded symmetric algebra over V
instead of the the graded skew–symmetric one. The transition between these
two settings uses the so-called décalage-isomorphism

decn : Sn(V ) → Λn(V [−1])[n]

x1 · · · xn 7→ (−1)
P

n

i=1(n−i)(|xi|)x1 ∧ · · · ∧ xn.
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The connection between L∞[1]-algebras and L∞-algebras is easy:

Lemma 1. Let W be a graded vector space. There is a one-to-one correspon-
dence between L∞[1]-algebra structures on W [1] and L∞-algebra structures
on W .

More important is the fact that we also allow a mapm0 : R → V [1] as part
of the structure given by an L∞[1]-algebra. This piece can be interpreted
as an element of V1. In the traditional definition m0 is assumed to vanish.
Relying on a widespread terminology, we call structures with m0 = 0 “flat”.
Observe that in the case of a flat L∞[1]-algebra m1 is a coboundary operator.
Moreover L∞[1]-algebras with mk = 0 for all k 6= 1, 2 correspond exactly to
differential graded Lie algebras under the décalage-isomorphism:

Definition 2. A graded Lie algebra (h, [−,−]) is a graded vector space h

equipped with a linear map [−,−] : h⊗ h → h satisfying the following condi-
tions:

• graded skew-symmetry: [x, y] = −(−1)|x||y|[y, x] and

• graded Jacobi identity: [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]],

for all homogeneous x ∈ h|x|, y ∈ h|y| and z ∈ h.
A differential graded Lie algebra is a triple (h, d, [−,−]) where (h, [−,−]) is

a graded Lie algebra and d is a linear map of degree +1 such that d ◦ d = 0
and d[x, y] = [dx, y] + (−1)|x|[x, dy] holds for all x ∈ h|x| and y ∈ h.

If one goes from the category of graded vector spaces to the category of
graded commutative associative algebras, the reasonable replacement of the
notion of a (differential) graded Lie algebra is that of a (differential) graded
Poisson algebra:

Definition 3. A graded Poisson algebra is a triple (A, ·, [−,−]) where (A, ·)
is a graded commutative associative algebra and (A, [−,−]) is a graded Lie

algebra such that [x, y · z] = [x, y] · z + (−1)|x||y|y · [x, z] holds for x ∈ A|x|,
y ∈ A|y| and z ∈ A.

A differential graded Poisson algebra is a quadruple (A, d, ·, [−,−]) where
(A, ·, [−,−]) is a graded Poisson algebra, (A, d, [−,−]) is a differential graded

Lie algebra and d(x · y) = dx · y + (−1)|x|x · dy holds for all x ∈ A|x| and
y ∈ A.

We briefly review a description of L∞[1]-algebras, equivalent to the one
given in Definition 1, which goes back to Stasheff [Sta1]. We remarked
before that the graded commutative algebra S(V ) associated to a graded
vector space V is a cofree coconnected graded cocommutative coassociative
coalgebra with respect to the coproduct ∆ inherited from T (V ). A linear
map Q : S(V ) → S(V ) that satisfies ∆ ◦ Q = (Q ⊗ id + id ⊗ Q) ◦ ∆ is
called a coderivation of S(V ). By cofreeness of the coproduct ∆ it follows
that every linear map from S(V ) to V can be extended to a coderivation
of S(V ) and that every coderivation Q is uniquely determined by pr ◦ Q
where pr: S(V ) → V is the natural projection. So there is a one-to-one
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correspondence between families of linear maps (mn : Sn(V ) → V [1])n∈N

and coderivations of S(V ) of degree 1. Moreover, the graded commuta-
tor equips ⊕k∈ZHom(S(V ), S(V )[k])[−k] with the structure of a graded Lie
algebra and this Lie bracket restricts to the subspace of coderivations of
S(V ). Odd coderivations Q that satisfy [Q,Q] = 0 are in one-to-one corre-
spondence with families of maps whose associated Jacobiators vanish iden-
tically. Consequently, Maurer-Cartan elements of the space of coderiva-
tions of S(V ) correspond exactly to L∞[1]-algebra structures on V . Since
Q ◦Q = 1

2 [Q,Q] = 0, Maurer–Cartan elements of the space of coderivations
are exactly the codifferentials of S(V ).

We remark that the approach to L∞[1]-algebras outlined above makes
the notion of L∞[1]-morphisms especially transparent: these are just coal-
gebra morphisms that are chain maps between the graded symmetric alge-
bras equipped with the codifferentials that define the L∞[1]-algebra struc-
tures. There are two special kinds of L∞[1]-morphisms. As usual L∞[1]-
isomorphisms are L∞[1]-morphism with an inverse. Moreover there is the
notion of L∞[1] quasi-isomorphisms, i.e. those L∞[1]-morphisms which ad-
mit “inverses up to homotopy”: consider an L∞[1]-morphism between flat
L∞[1]-algebras, hence the unary structure maps are coboundary operators.
The given L∞[1]-morphism also has a unary component which is a chain map
for these coboundary operators. Consequently this map induces a map be-
tween the cohomologies. An L∞[1] quasi-isomorphism is an L∞[1]-morphism
between flat L∞-algebras such that this induced map between cohomologies
is an isomorphism. The notions of L∞-morphisms, isomorphisms and quasi-
isomorphisms are obtained from the corresponding notions in the category
of L∞[1]-algebras using the identification under the décalage-isomorphism.

Associated to every L∞-algebra structure (mn :
∧n(V ) → V [2 − n])n∈N

on a graded vector space V is a subset of V1 given by the zero set of the
so called MC-equation (MC stands for Maurer-Cartan from now on) which
reads

∑

n≥0

1

n!
mn(µ⊗ · · · ⊗ µ) = 0.

Elements of V1 satisfying this equation are called MC-elements. We denote
the set of all these elements by MC(V ). It is well-known that there is
a natural action of V0 on V by inner derivations. Integrating these one
obtains a subgroup Inn(V ) of the automorphism group Aut(V ) of the L∞-
algebra V . There is an induced action on MC(V ). We will give a complete
definition of the action of V0 on MC(V ) for V being the BFV-complex in
subsection 5.2.

2.2. Derived Brackets Formalism. We describe the derived brackets for-
malism essentially following [V].

Definition 4. We call the triple (h, a,Πa) a V-algebra (V for Voronov) if
(h, [·, ·]) is a graded Lie algebra, a is an abelian Lie subalgebra of h – i.e. a is
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a graded vector subspace of h and [a, a] = 0 – and Πa : h → a is a projection
such that

Πa[x, y] = Πa[Πax, y] + Πa[x,Πay](1)

holds for every x, y ∈ h.

Instead of condition (1) one can require that h splits into a⊕p as a graded
vector space where p is also a graded Lie subalgebra of h. In terms of the
projection, p is given by the kernel of Πa.

Let (h, a,Πa) be a V-algebra and pick an element P ∈ h of degree +1.
One can define the multilinear maps on a

(2) Dn
P : a⊗n → a[1]

x1 ⊗ · · · ⊗ xn 7→ Πa[[. . . [[P, x1], x2], . . . ], xn]

for every n ≥ 0. These maps are called the higher derived brackets associated
to P . It is easy to check that all these maps are graded commutative,
namely:

Dn
P (x1 ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ xn) =

= (−1)|xi||xi+1|Dn
P (x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xn)

for every 1 ≤ i ≤ n − 1. We restrict the higher derived brackets con-
structed from P to the symmetric algebra S(a) and obtain a family of maps
(Dn

P : Sn(a) → a[1])n∈N.
In [V] it is proven that the Jacobiators of the higher derived brackets

(Dn
P : Sn(a) → a[1])n∈N associated to P are given by the higher derived

brackets associated to 1
2 [P,P ]:

JnDP
= Dn

1
2
[P,P ]

.

It follows that all Jacobiators vanish identically if we assume that [P,P ] = 0
holds. Elements P of degree 1 that satisfy [P,P ] = 0 are exactly the MC-
elements of the graded Lie algebra h. Hence one obtains:

Theorem 1. Let (h, a,Πa) be a V-algebra and P a MC-element of (h, [−,−]).
Then the family of higher derived brackets associated to P

(Dn
P : Sn(a) → a[1])n∈N,

equips a with the structure of an L∞[1]-algebra (see Definition 1).

2.3. Homotopy Transfer. We describe a way to transfer L∞-algebras
along contractions. Since we are not primarily interested in this transfer-
procedure for its own sake but rather as a tool, we will not state the results
of this subsection in the largest possible generality.

The two most serious restrictions are that we will assume 1. that the
L∞-algebra we desire to transfer is a differential graded Lie algebra and
2. that the target of the transfer is the cohomology. We remark that a
straightforward generalization of the procedure we are going to present 1.
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works for arbitrary L∞-algebras and 2. more general subcomplexes than the
cohomology can be treated. See [GL] for instance.

The situation is as follows: Let X be a graded vector space and d a
coboundary operator on X (i.e. d : X → X[1] and d ◦ d = 0). We denote
the cohomology H(X, d) by H. Assume that there are linear maps

• h : X → X[−1],
• pr : X → H surjective and
• i : H → X injective

such that the following conditions hold:

• i and pr are chain maps (i.e. d ◦ i = 0 and pr ◦ d = 0),
• pr ◦ i = idH ,
• idX − i ◦ pr = d ◦ h+ h ◦ d and
• h ◦ h = 0, h ◦ i = 0 and pr ◦ h = 0 (sideconditions).

The tupel (X, d, h, i, pr) is called contraction data and can be encoded in the
following diagram:

(H, 0)
i // (X, d)
pr

oo , h.

Theorem 2. Let (X, d, h, i, pr) be a graded vector space equipped with con-
traction data and a finite compatible filtration, i.e. a collection of graded
vector subspaces

X = F0X ⊇ F1X ⊇ · · · ⊇ FnX ⊇ F(n+1)X ⊇ · · ·

such that FNX = {0} for N large enough, satisfying

• d(FkX) ⊂ FkX for all k ≥ 0 and
• h(FkX) ⊂ FkX for all k ≥ 0.

Furthermore suppose X is equipped with the structure of a differential graded
Lie algebra (X,D, [−,−]) such that

• (D − d)(FkX) ⊂ F(k+1)X.

Then the cohomology H of (X, d) is naturally equipped with the structure of

a (flat) L∞-algebra and there is a well-defined L∞-morphism î : H ; X.

In all the cases where we apply Theorem 2 it is easy to check that the
L∞-morphism described in Lemma 3 is in fact an L∞ quasi-isomorphism.

The conceptual proof of Theorem 2 is straightforward and can be found
in [GL] for instance. One makes use of the interpretation of the L∞-algebra
structure on X as a codifferential Q on S(X[1]) and uses transfer formulae
for Q to obtain a codifferential Q on S(H[1]), i.e. a L∞-algebra structure

on H. Moreover there are well-known formulas for î.
Although Theorem 2 establishes the existence of a transfer-procedure

along contraction data, we need a more concrete description of the induced
L∞-algebra and of the L∞ quasi-isomorphism between H and X. Such a
description was first given in the setting of A∞-algebras: in [Me] inductive
formulae were presented for the structure maps of the induced structure and
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in [KS] an interpretation in terms of Feynman diagrams was provided. Sim-
ilar descriptions are known to hold for the transfer of L∞-algebras as well,
although we need a slight generalization of the setting presented in [Me] and
[KS] since we allow the coboundary operator D to deviate from d.

We present the description of the transfer along contraction data using
diagrams. Since we do not claim any originality on the material which is
well-known to the experts, we only state the results. The interested reader
can find the proofs in the Appendix.

An oriented decorated tree T is a finite connected graph without loops of
any kind that only consists of directed edges and trivalent interior vertices
with two incoming edges and one outgoing one. There are two kinds of
exterior vertices: ones with an outgoing edge – we call these leaves – and
exactly one with an incoming edge that we call the root. The orientation is
given by an association of two numbers to any pair of edges with the same
vertex as their target that tells us which of the two edges is the “right” and
which is the “left” one. The decoration is an assignment of a non-negative
integer to each edge.

root

leaves

interior edge

exterior edge

6

2

0 7

The edge of the diagram with consists of only one leaf which is connected
to the root must be decorated by a positive integer. Clearly we have a
decomposition

T =
⊔

n≥1

T(n)

where T(n) denotes the set of trees with exactly n leaves. We will denote
the set of unoriented decorated trees by [T]. There is a natural projection

[·] : T → [T]

that respects the decomposition of T and that of [T]:

[T] =
⊔

n≥1

[T](n) =
⊔

n≥1

[T(n)].

We define |Aut(T )| for T an oriented decorated tree to be the cardinality of
the group of automorphisms of the underlying unoriented decorated tree.
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Consider X equipped with contraction data (X, d, h, i, pr) and the struc-
ture of a differential graded Lie algebra (X,D, [−,−]) satisfying all condi-
tions stated in Theorem 2. Then one assigns to any tree T ∈ T(k) a map

mT : (H[1])⊗k → H[2]

as follows: Using the décalage-isomorphism we equip X[1] with the structure
of an L∞[1]-algebra with structure maps µ1 and µ2 (corresponding to D and
[−,−] respectively). We write µ1 = d+µ1

∆. Next we put a µ2 at each interior
vertex of T ∈ T(k) and a number of µ1

∆s at every edge – the number of µ1
∆s

is given by the number decorating the edge under consideration. Between
any two consecutive operations one puts −h. Finally one places i at the
leaves and pr at the root. The orientation of the tree induces a numbering
of the leaves of T and applying all these maps in the order given by the
orientation of the tree yields the map mT .

It is easy to check that the “symmetrization”
∑

σ∈Σk

1

|Aut(T )|
σ∗(mT )

does not depend on the specific choice of the orientation of T .
Hence we get a map

m̂ : [T] → Hom(S(H[1]),H[2])

and consequently

νk :=
∑

[T ]∈[T](k)

m̂([T ])

is well-defined.

Lemma 2. The sequence of maps (νk : Sk(H[1]) → H[2])k≥1 defines the
structure of an L∞[1]-algebra on H[1].

See the Appendix for a proof of this statement.
The L∞[1]-morphism î : H[1] ; X[1] is also given in terms of oriented

decorated trees. This time we associate the following map

nT : H[1]⊗k → X[1]

to a tree T in T(k): again place µ2 at all interior vertices, l copies of µ1
∆ at

edges decorated by l and between two consecutive operations of this kind
place −h. As before put i at the leaves. The only difference is that we put
a −h at the root instead of pr. Again it is straightforward to check that the
“symmetrization”

∑

σ∈Σk

1

|Aut(T )|
σ∗(nT )

does not depend on the choice of orientation of T and we obtain a map

n̂ : [T] → Hom(S(H[1]),X[1]).
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One defines a family of maps

λk :=
∑

[T ]∈[T](k)

n̂([T ])

that satisfies

Lemma 3. The sequence of maps (λk : Sk(H[1]) → X[1])k≥1 defines an
L∞[1]-morphism between (H[1], ν1, ν2, . . . ) and (X[1], µ1, µ2).

The interested reader can find a proof of this statement in the Appendix.

2.4. Smooth graded Manifolds.

Definition 5. Let M be a smooth finite dimensional manifold.
A (bounded) graded vector bundle over M is a collection E• = (Ei)i∈Z of

finite rank vector bundles over M such that Ek = {0} for k smaller than
some kmin or larger than some kmax. Since we only consider bounded graded
vector bundles we will drop the adjective bounded from now on.

The algebra of smooth functions on a graded vector bundle E• is the graded
commutative associative algebra

C∞(E•) := Γ(⊗k∈ZT
−k•(E∗

k))

where T −k•(E∗
k) is

∧−k•(E∗
k) for k odd and S−k•(E∗

k) for k even. The
symbol ⊗ refers to the completed tensor product over C∞(M). Moreover the
algebraic structure on the tensor product of two graded associative algebras
is declared to be (a ⊗ x) · (b ⊗ y) := (−1)|x||b|(a · b) ⊗ (x · y) for x and b
homogenous.

A morphism between two graded vector bundles E• and F• is a morphism
of unital graded commutative associative algebras from C∞(F•) to C∞(E•).

We define the nth suspension operator [n] on smooth graded vector bun-
dles by E•[n] := (Ei+n)i∈Z.

Definition 6. A smooth graded manifold M is a unital graded commutative
associative algebra AM that is isomorphic to C∞(E•) for some graded vector
bundle E•. We define C∞(M) := AM .

A morphism between two smooth graded manifolds M and N is a mor-
phism of unital graded commutative algebras from C∞(N ) to C∞(M).

We remark that a specific isomorphism between C∞(M) and C∞(E•) is
not part of the data that define the smooth graded manifold M.

Let M be a smooth graded manifold and let X (M) be the vector space
of graded derivations of C∞(M), i.e. φ ∈ Xk(M) iff

φ : C∞(M) → C∞(M)[k]

satisfies φ(a · b) = φ(a) · b + (−1)k|a|a · φ(b) for homogeneous a and b in
C∞(M).

11



Definition 7. Let M be a smooth graded manifold. The algebra of multi-
vector fields on M is the graded commutative associative algebra

V(M) := SC∞(M)(X (M)[−1]),

i.e. the graded symmetric algebra generated by X (M)[−1] as a graded mod-
ule over C∞(M).

Let φ,ψ ∈ X (M) be homogeneous elements of degree |φ| and |ψ| respec-
tively. Then

[φ,ψ] := φ ◦ ψ − (−1)|φ||ψ|ψ ◦ φ

defines the structure of a graded Lie algebra on X (M). This bracket can be
extended to a graded Lie algebra bracket [−,−]SN (SN stands for Schouten-
Nijenhuis) on V(M)[1] by imposing the condition that [−,−]SN is a graded
biderivation of V(M).

Assume that the smooth graded manifold M is represented by the graded
vector bundle E• →M . Using connections on the components of E• one sees
that there is an isomorphism between V(M) and C∞(T ∗[1]M ⊕E• ⊕E∗

• [1])
where E∗

• refers to the graded vector bundle (E∗
−i)i∈Z. Hence:

Lemma 4. Let M be a smooth graded manifold. Then the graded com-
mutative algebra of multivector fields V(M) on M defines a smooth graded
manifold.

Let Z ∈ V(M) be a bivector field (i.e. an element of S2
C∞(M)(X (M)[−1]))

on M of total degree 0. The algebra C∞(M)[1] is an abelian Lie subalgebra
of (V(M)[1], [−,−]SN ) hence we can construct the derived brackets (Dn

Z)
associated to Z, see subsection 2.2. The only possible non-vanishing term
is D2

Z . Using the décalage-isomorphism we obtain a map
∧2(C∞(M)) →

C∞(M) which we denote by [−,−]Z . According to Theorem 1 in subsection
2.2, [−,−]Z equips C∞(M) with the structure of a graded Lie algebra if Z
satisfies [Z,Z]SN = 0. It can be checked in this case that (C∞(M), [−,−]Z)
is a graded Poisson algebra.

2.5. Poisson Geometry. Let M be a smooth finite dimensional manifold.
In subsection 2.4 the Schouten-Nijenhuis bracket [−,−]SN was introduced:
it equips V(M)[1] with the structure of a graded Lie algebra. A Poisson
bivector field Π on M is a MC-element of (V(M)[1], [−,−]SN ), i.e. Π is a
bivector field satisfying [Π,Π]SN = 0.

Associated to any Poisson bivector field Π on M there is a vector bun-
dle morphism Π# : T ∗M → TM given by contraction. Denote the natural
pairing between TM and T ∗M by <−,−>. The bracket on C∞(M) de-
fined by [f, g]Π :=<Π#(df), dg> is R-bilinear, skew-symmetric, satisfies the
Jacobi-identity and is a biderivation for the multiplication on C∞(M). Hence
(C∞(M), [−,−]Π) is a Poisson algebra.

12



Every Poisson manifold comes along with a singular foliation FΠ, given
by

Π#(T ∗M) →֒ TM.

Locally this foliation is spanned by elements of the form Π#(df) for f ∈
C∞(M). The identity

[Π#(df),Π#(dg)]SN = Π#(d[f, g]Π)

is satisfied which implies that FΠ is involutive. By a generalization of the
classical theorem of Frobenius due to Stefan and Sussman (see [Ste], [Su])
the integrability of FΠ follows. The integrating leaves all carry a natural
symplectic structures induced from Π.

There is another interesting structure associated to every Poisson man-
ifold (M,Π). Consider the binary operation on Γ(T ∗M) = Ω1(M) given
by

[α, β]K := LΠ#(α)(β) − LΠ#(β)(α) + dΠ(α, β)

called the Koszul bracket. One can check that it is a Lie bracket on Ω1(M)
and that the vector bundle morphism Π# : T ∗M → TM induces a morphism
of Lie algebras (Ω1(M), [−,−]K) → (X (M), [−,−]SN ). Moreover the so-
called Leibniz identity holds:

([α, fβ]K) = f [α, β]K + Π#(α)(f) · β

for all α, β ∈ Ω1(M) and f ∈ C∞(M). The triple (T ∗M, [−,−]K ,Π
#) is

an example of a Lie algebroid over M . Associated to any Lie algebroid is
a cocomplex, called the Lie algebroid cocomplex. In fact this cocomplex
encodes exactly the same information as the original Lie algebroid data. In
the case of the Lie algebroid (T ∗M, [−,−]K ,Π

#) the Lie algebroid cocomplex
is (V(M), [Π,−]SN ).

Consider a submanifold S of M . The annihilator N∗S of TS is a natural
subbundle of T ∗M . This subbundle fits into a short exact sequence of vector
bundles:

0 // N∗S // T ∗
SM // T ∗S // 0 .

Definition 8. A submanifold S of a smooth finite dimensional Poisson
manifold (M,Π) is called coisotropic if the restriction of Π# to N∗S has
image in TS.

Consequently any coisotropic submanifold S is equipped with a natural
singular foliation FS := Π#(N∗S) which is involutive. Involutivity of FS
follows from another equivalent characterization of coisotropic submanifolds:
define the vanishing ideal of S by

IS := {f ∈ C∞(M) : f |S = 0}.

A submanifold S is coisotropic if and only if IC is a Lie subalgebra of
(C∞(M), [−,−]Π). Observe that Π#(N∗S) is locally spanned by Π#(df) for
f ∈ IS. For f, g ∈ IS one has [Π#(df),Π#(dg)]SN = Π#(d[f, g]Π). Since

13



[f, g]Π ∈ IS the foliation FS is involutive. We denote the corresponding leaf
space by S := S/∼FS

. This space is usually very ill-behaved (non-smooth,
non-Hausdorff, etc.). In particular there might not be a meaningful way to
define C∞(S) using the topological space S. Instead one can define C∞(S)
as the space of functions on S which are invariant under FS , i.e.

C∞(S) := {f ∈ C∞(S) : X(f) = 0 for all X ∈ Γ(FS)}.

This is a subalgebra of C∞(S).
Fix an embedding φ : NS →֒ M of the normal bundle of S into M .

Via the identification of NS with an open neighbourhood of S in M the
vector bundle NS inherits a Poisson bivector field Πφ. Hence we can assume
without loss of generality that M is the total space of a vector bundle E →
S. We will do so in the rest of the paper. Observe that under the above
assumptions there is a natural isomorphism E ∼= NS.

With help of this assumption one sees that C∞(S) comes equipped with
a Poisson bracket [−,−]S inherited from (E,Π): the algebra C∞(S) is the
quotient of C∞(E) by IS. There is a Lie algebra action of (IS, [−,−]Π)
on the quotient. The algebra C∞(S) is given by the invariants under this
action, i.e.

C∞(S) ∼= (C∞(E)/IS)IS .

This algebra is isomorphic to the quotient of

N (IS) := {f ∈ C∞(E) : [f,IS]Π ⊂ IS}

by IS. It is straightforward to check that the Poisson bracket on C∞(E)
descends to this quotient.

The Lie algebroid structure (T ∗M, [−,−]K ,Π
#) also restricts to coisotro-

pic submanifolds: the bundle map Π# : T ∗E → TE restricts to a bundle
map E∗ → TS by definition and the Koszul bracket can also be restricted
to Γ(E∗). The triple (E∗, [−,−]K ,Π

#|E∗) satisfies the same identities as
(T ∗E, [−,−]K ,Π

#) and hence is a Lie algebroid, see [W2] for details. The
easiest way to describe this Lie algebroid over S is via its associated Lie
algebroid cocomplex. Define a projection pr : V(M) → Γ(

∧

E) as the
unique algebra morphism extending the restriction C∞(E) → C∞(S) and
X (E) = Γ(TE) → Γ(TSE) → Γ(E). The graded algebra Γ(

∧

E) is equipped
with the differential given by

∂S(X) := pr([Π, X̃ ]SN |S)

where X̃ is any extension of X ∈ Γ(
∧

E) to a multivector field on E. The
cohomology of the cocomplex (Γ(

∧

E), ∂S) is called the Lie algebroid coho-

mology of S. It is well-known that

Lemma 5. Let S be a coisotropic submanifold of a smooth finite dimensional
Poisson manifold (M,Π). The algebra C∞(S) is isomorphic to the degree
zero Lie algebroid cohomology H0(

∧

(NS), ∂S).
14



Moreover it is possible to show that the Lie algebroid differential ∂S is in-
dependent of the embedding NS →֒M as is the Poisson bracket on C∞(S).

3. The BFV-complex

Consider a finite rank vector bundle E → S that is equipped with a
Poisson bivector field, i.e. Π ∈ V2(E) satisfying [Π,Π]SN = 0, such that S
is a coisotropic submanifold of E.

The aim of this section is to describe the construction of a homological
resolution of the Poisson algebra (C∞(S), [−,−]S) (introduced in subsection
2.5) in terms of a differential graded Poisson algebra

(BFV (E,Π),DBFV , [−,−]BFV ).

BFV (E,Π) can be described as the space of smooth functions on some
smooth graded manifold. The degree zero component of the cohomology
H(BFV (E,Π),DBFV ) is isomorphic to C∞(S) and the induced bracket co-
incides with [−,−]S .

The basic ideas of the construction of (BFV (E,Π),DBFV , [−,−]BFV )
were invented by Batalin, Fradkin and Vilkovisky ([BF], [BV]) with appli-
cations to physics in mind. Later it was reinterpreted by Stasheff in terms
of homological algebra ([Sta2]). A convenient globalization to the smooth
setting was presented by Bordemann and Herbig ([B], [He]). We essentially
follow [Sta2],[B] and [He] in this exposition. The only deviation will be a
new conceptual approach to the Rothstein-bracket ([R]) and its extension
to the Poisson setting ([He]) in terms of higher homotopy structures given
in section 3.2.

The construction of the BFV-complex relies on the following input data:
1. a choice of embedding of the normal bundle of S as a tubular neighour-
hood (in order to obtain an appropriate vector bundle E → S, see sub-
section 2.5), 2. a connection on E → S and 3. a distinguished element
Ω ∈ BFV (E,Π) satisfying [Ω,Ω]BFV = 0. The dependence of the resulting
differential graded Poisson algebra on these data will be clarified elsewhere
([Sch]).

3.1. The Ghost/Ghost-Momentum Bundle. Let E → S be a finite
rank vector bundle over a smooth finite dimensional manifold. Using the
projection map of the vector bundle E → S we can pull back the graded
vector bundle E∗[1]⊕E[−1] → S to a graded vector bundle over E which we
denote by E∗[1]⊕E [−1] → E. The situation is summarized by the following
Cartesian square:

E∗[1] ⊕ E [−1] //

P

��

E∗[1] ⊕ E[−1]

��

E // S.
15



We define BFV (E,Π) to be the space of smooth functions on the graded
manifold which is represented by the graded vector bundle E∗[1] ⊕ E [−1]
over E. In terms of sections one has BFV (E,Π) = Γ(

∧

(E) ⊗
∧

(E∗)). This
algebra carries a bigrading given by

BFV (p,q)(E,Π) := Γ(∧p(E) ⊗∧q(E∗)).

In physical terminology p / q is referred to as the ghost degree / ghost-

momentum degree respectively. One defines

BFV k(E,Π) :=
⊕

p−q=k

BFV (p,q)(E,Π)

and calls k the total degree (in physical terminology this is the “ghost num-
ber”). There is yet another decomposition of BFV (E,Π) that will be
useful later: set BFVr(E,Π) := Γ(

∧

(E) ⊗
∧r(E∗)). Moreover we define

BFV≥r(E,Π) to be the ideal generated by BFVr(E,Π).
The smooth graded manifold E∗[1]⊕E [−1] comes equipped with a Poisson

bivector field G given by the natural fibre pairing between E and E∗, i.e. it
is defined to be the natural contraction on Γ(E) ⊗ Γ(E∗) and it extends
uniquely to a graded skew-symmetric biderivation of BFV (E,Π).

3.2. Lifting the Poisson Bivector Field. We want to equip BFV (E,Π)
with the structure of a graded Poisson algebra which essentially combines
the Poisson bivector field Π on E and the Poisson bivector field G which
encodes the natural fibre pairing between E∗[1] and E [−1].

First we lift Π from the base E to the graded vector bundle

E∗[1] ⊕ E [−1]
P
−→ E.

For this purpose we choose a connection ∇ on the vector bundle E → S.
This yields a connection on E∗[1]⊕E[−1]. Pulling back this connection along
E → S gives a connection on E∗[1]⊕E [−1] → E that is metric with respect
to the natural fibre pairing. Fix such a connection on E∗[1]⊕E [−1] → S and
consider the horizontal lift with respect to that connection, i.e. we obtain a
map ι∇ : X (E) →֒ X (E∗[1] ⊕ E [−1]). Setting ι∇(f) := f ◦ P for f ∈ C∞(E)
we can uniquely extend ι∇ to a morphism of algebras

ι∇ : V(E) →֒ V(E∗[1] ⊕ E [−1]).

Since ι∇[1] fails in general to be a morphism of graded Lie algebras, the
horizontal lift ι∇(Π) of the Poisson bivector field Π does not satisfy the
MC-equation in (V(E∗[1] ⊕ E [−1])[1], [−,−]SN ). The same is true for the
sum G + ι∇(Π), hence this bivector field does not define the structure of a
graded Poisson algebra on BFV (E,Π). We will show that an appropriate
correction term △ can be found such that G+ ι∇(Π) +△ is a MC-element.
The existence of such a △ is the straightforward consequence of the following
proposition:
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Proposition 1. Let E be a finite rank vector bundle with connection ∇
over a finite dimensional smooth manifold E. Consider the smooth graded
manifold E∗[1] ⊕ E [−1] → E and denote the Poisson bivector field on it
coming from the natural fibre pairing between E and E∗ by G.

Then there is an L∞ quasi-isomorphism L∇ between the graded Lie algebra
(V(E)[1], [−,−]SN ) and the differential graded Lie algebra
(V(E∗[1] ⊕ E [−1])[1], [G,−]SN , [−,−]SN ).

Observe that it is not assumed in the Proposition that E is a vector
bundle or that E → E is a pull back bundle.

Proof. Consider the induced connection ∇ on E∗[1]⊕E [−1] → E (by a slight
abuse of notation we denote this connection again by ∇). It is metric with
respect to the natural fibre pairing. The algebra morphism ι∇ : V(E) →֒
V(E∗[1] ⊕ E [−1]) (given by the horizontal lift) is a section of the natural
projection

Pr : V(E∗[1] ⊕ E [−1]) → V(E).

Obviously Pr ◦ ι∇ = id holds on V(E).
Consider the complexes (V(E∗[1]⊕E [−1]), Q := [G,−]SN ) and (V(E), 0).

It is easy to check that Pr and ι∇ are chain maps. Here it is crucial that the
induced connection on E∗[1] ⊕ E [−1] is metric with respect to the natural
fibre pairing. We will construct a homotopy

H∇ := V(E∗[1] ⊕ E [−1]) → V(E∗[1] ⊕ E [−1])[−1]

such that Q ◦H∇ +H∇ ◦Q = id− ι∇ ◦ Pr, i.e. ι∇ and Pr are inverses up
to homotopy and it follows that Pr induces an isomorphism H(V(E∗[1] ⊕
E[−1]), Q) ∼= V(M).

To construct an appropriate homotopy H∇ we extend ι∇ to an algebra
isomorphism

ϕ∇ : A := C∞(T ∗[1]E ⊕ E∗[1] ⊕ E [−1] ⊕ E [0] ⊕ E∗[2]) → V(E∗[1] ⊕ E [−1]),

see Lemma 4 in subsection 2.4. Via this identification we equip A with a
Gerstenhaber bracket [−,−]∇ and a differential Q̃ := ϕ−1

∇ ◦Q ◦ ϕ∇. Define

H̃ to be the sum of the pullbacks by the maps −idE∗[1][1] : E∗[1] → E∗[2]

and −idE[−1][1] : E [−1] → E [0] on A. It is straightforward to check that H̃

is a differential and that (Q̃ ◦ H̃ + H̃ ◦ Q̃)(X) is equal to the total polyno-
mial degree of X in all of the fibre components E∗[1], E∗[2], E [−1] and E [0].

Normalising H̃ and using the identification ϕ∇ leads to a homotopy H∇

on V(E∗[1] ⊕ E [−1]). It is straightforward to check that the side-conditions
H∇ ◦H∇ = 0, H∇ ◦ ι∇ = 0 and Pr ◦H∇ = 0 hold.

We summarize the situation in the following diagram:

(V(E), 0)
ι∇ // (V(E∗[1] ⊕ E [−1]), Q)
Pr

oo ,H∇.
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According to subsection 2.3 these data can be used to perform homological
transfer of L∞-algebra structures along the contraction Pr. Starting with
the differential graded Lie algebra (V(E∗[1]⊕E [−1])[1], Q = [G,−]SN , [−,−]SN )
one constructs an L∞ quasi-isomorphic L∞-algebra structure on V(E)[1]
(with zero differential) together with an L∞ quasi-isomorphism L∇. The
binary operation of this structure will simply be given by

Pr([ι∇(−), ι∇(−)]SN ) = [−,−]SN .

All potential higher operations can be checked to vanish as follows: As
described in 2.3 one considers all trivalent oriented trees. On the leaves
(i.e. exterior vertices with edges oriented away from them) one places ι∇,
on each interior trivalent vertex one places [−,−]SN , on the root (i.e. the
unique exterior vertex with edge oriented towards it) one places Pr and on
interior edges (those not connected to any leaf or to the root) one places
−H∇. Then one composes these maps in the order given by the orientation
of the tree.

To prove that no higher order operations occur we introduce a decompo-
sition of V(E∗[1]⊕E [−1]). By definition this is the space of multiderivations
of the graded unital algebra C∞(E∗[1]⊕E [−1]). The algebra of smooth func-
tions is bigraded which induces a bigrading on its tensor algebra (just take
the sum of the bidegrees of all tensor components) which in turn induces
a bigrading on the space of multivector fields, i.e. an element of bidegree
(m,n) is one that maps a tensor product of function of total bidegree (p, q)
to a function of bidegree (p+m, q+n). This bidegree is obviously bounded
from above. We denote the ideal generated by the components of bidegree
(M,N) with M ≥ m and N ≥ n by V(m,n)(E∗[1] ⊕ E [−1]).

Consider a tree as above and forget about Pr at the root. One can
inductively show that the corresponding operation maps tensor products
of elements of V(E) to V(e−1,e−1)(E∗[1] ⊕ E [−1]) where e is the number of
trivalent vertices of the tree. This relies on the following

Lemma 6. Denote the curvature of the connection ∇ on E → E by R∇.
We interpret R∇ as an element of Ω2(E,End(E)) = Ω2(E, E ⊗ E∗). Then

R∇(−,−) = H∇([ι∇(−), ι∇(−)]SN )

holds.

Proof of the Lemma. The right-hand side of the claimed equality can be
checked to be C∞(E)-bilinear and multiplicative in both slots with respect
to the algebra structure on V(E). Hence it is determined by its values on a
pair of vector fields and can be interpreted as a two-form on E with values
in a vector bundle. Consequently it is enough to prove the equality locally
which is a straightforward computation in coordinate charts. �

So all operations vanish identically after applying Pr except for the case
of the tree with only one trivalent edge (which corresponds to the binary
operation [−,−]SN ). �
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Corollary 1. Let E → E be a finite rank vector bundle with connection
∇ over a smooth finite dimensional Poisson manifold (E,Π). Consider the
smooth graded manifold E∗[1]⊕E [−1] → E and denote the Poisson bivector
field on it coming from the natural fibre pairing between E and E∗ by G.

Then there is a Poisson bivector field Π̂ on E∗[1] ⊕ E [−1] such that

Π̂ = G+ ι∇(Π) + △ for △ ∈ V(1,1)(E∗[1] ⊕ E [−1]).

Recall that V(1,1)(E∗[1]⊕E [−1]) is the ideal of V(E∗[1]⊕E [−1]) generated
by multiderivations which map a tensor product of functions of total bidegree
(p, q) to a function of bidegree (P,Q) where P > p and Q > q.

This Corollary was originally proven by Rothstein in [R] for (N,Π) sym-

plectic with the help of a concrete formula for Π̂. Herbig showed that Roth-
stein’s formula holds also in the Poisson case ([He]).

Proof. The general theory of L∞-algebras implies that given two L∞ quasi-
isomorphic L∞-algebras and a formal MC-element of one of these L∞-
algebras, one can construct a formal MC-element of the other one. We apply
this to the Poisson bivector field Π seen as a MC-element in (V(E)[1], [−,−]SN )
which is L∞ quasi-isomorphic to (V(E∗[1] ⊕ E [−1]), [G,−]SN , [−,−]SN ) ac-
cording to Proposition 1.

The unary operation from V(E) to V(E∗[1] ⊕ E [−1]) is given by ι∇. The
higher structure maps of the L∞-morphism between V(E) and V(E∗[1] ⊕
E [−1]) are given in terms of trivalent oriented trees. One places ι∇ at leaves
(i.e. exterior vertices with edges oriented away from them), [−,−]SN at
trivalent interior vertices and the homotopy −H∇ at all interior edges (all
edges not connected to a leaf or root) and at the edge connected to the
root (the unique exterior vertex with the edge oriented towards it). There is
an estimate similar to the one in the proof of Proposition 1: the operation
corresponding to a tree with e trivalent edges maps elements of V(E) to

V(e,e)(E∗[1] ⊕ E [−1]).
This implies 1. that we do not have to care about convergence since the

filtration of V(E∗[1] ⊕ E [−1]) by the ideals V(k,l)(E∗[1] ⊕ E [−1]) is bounded
from above, so only finitely many trees will contribute. And 2. by applying
the L∞ quasi-isomorphism to Π one obtains a Maurer-Cartan element of
(V(E∗[1] ⊕ E [−1])[1], [G,−]SN , [−,−]SN ) of the form ι∇(Π) + △ with △ ∈
V(1,1)(E∗[1]⊕E [−1]). This is equivalent to the statement that G+ι∇(Π)+△
is a Maurer-Cartan element of V(E∗[1] ⊕ E [−1])[1], [−,−]SN ) of the desired
form. �

By definition such an element yields the structure of a graded Poisson
algebra on C∞(E∗[1] ⊕ E [−1]) =: BFV (E,Π):

Corollary 2. Let E → S be a finite rank vector bundle over a smooth finite
dimensional manifold S. Assume (E,Π) is a Poisson manifold. Consider

the associated ghost/ghost-momentum bundle E∗[1] ⊕ E [−1]
P
−→ E with the
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embedding j : E →֒ E∗[1] ⊕ E [−1] as the zero section. The natural fibre
paring between E∗ and E gives rise to a Poisson bivector field G.

Then there is a well-defined graded Poisson bracket [−,−]BFV on BFV (E,Π)
such that:

(1) [−,−]Π = j∗([P ∗(−), P ∗(−)]BFV ) and
(2) denoting the projection BFV 0(E,Π) → BFV (0,0)(E,Π) by proj the

composition

BFV (1,0)(E,Π) ⊗BFV (0,1)(E,Π)
[−,−]BF V

−−−−−−→ BFV 0(E,Π)
proj
−−→ BFV (0,0)(E,Π)

coincides with the natural fibre pairing between E and E∗.

3.3. The BFV-Charge. Next we construct a differentialDBFV onBFV (E,Π)
with special properties.

Proposition 2. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold S. Assume (E,Π) is a Poisson manifold such
that S is a coisotropic submanifold. Consider the graded Poisson algebra
BFV (E,Π) := (C∞(E∗[1]⊕E [−1]), [−,−]BFV ) with a bracket as in Corollary
2.

Then there is an element Ω ∈ BFV (E,Π) of degree +1 such that

(1) [Ω,Ω]BFV = 0 and
(2) Ω mod BFV≥1(E,Π) is given by the tautological section of E → E.

Recall that E is the pullback bundle of E → S by E → S which admits a
tautological section. By the inclusions

Γ(E) →֒ Γ(∧(E)) →֒ Γ(∧(E) ⊗ ∧(E∗)) = BFV (E,Π)

the tautological section can be seen as an element of BFV (1,0)(E,Π) which
we denote by Ω0.

The proof we give is a slight adaptation of the arguments in [Sta2]:

Proof. It is convenient to work in local coordinates: fix local coordinates
(xβ)β=1,...,s on S, linear fibre coordinates (yj)j=1,...,e along E, (cj)j=1,...,e

along E∗[1] and (bj)j=1,...,e along E [−1]. In local coordinates the tautological
section reads

Ω0 :=

e
∑

j=1

yjcj.

Since [Ω0,Ω0]G = 0 – G being the Poisson bivector field given by the natural
fibre pairing between E∗[1] and E [−1] – we obtain a differential

δ := [Ω0,−]G =

e
∑

j=1

yj
~∂

∂bj
.
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claim: H(BFV (E,Π), δ) ∼= C∞(E∗[1]) = Γ(
∧

E)
There are natural maps

i : E∗[1] →֒ E∗[1] ⊕ E [1] and

p : E∗[1] ⊕ E [−1] → E∗[1].

Define h : BFV (E,Π) → BFV (E,Π)[−1] by setting

h(fj1...jk(x, y, c)bj1 · · · bjk) :=

∑

1≤µ≤e

bµ
(

∫ 1

0

∂fj1...jk
∂yµ

(x, t · y, c)tkdt

)

bj1 · · · bjk

which is globally well-defined. It is straightforward to check i∗ ◦ δ = 0,
δ ◦ p∗ = 0, h ◦ h = 0, i∗ ◦ h = 0, h ◦ p∗ = 0 and δ ◦ h + h ◦ δ = id − p∗ ◦ i∗.
It follows that i∗ : BFV (E,Π) → C∞(E∗[1]) induces and isomorphism on
cohomology.

First note that [Ω0,Ω0]BFV mod BFV≥1(E,Π) = [Ω0,Ω0]ι∇(Π) =: 2R0.
Using the biderivation property of [−,−]ι∇(Π) one sees that

[Ω0,Ω0]ι∇(Π) = [yi, yj ]ι∇(Π)cicj + 2yi[ci, y
j]ι∇(Π)cj + yiyj[ci, cj ]ι∇(Π).

Because [yi, yj ]ι∇(Π) is equal to the pull back of [yi, yj ]Π along the projection

E∗[1]⊕E [−1] → E, the condition that [yi, yj ]Π is contained in the vanishing
ideal IS of S for arbitrary i, j = 1, . . . , e is equivalent to the condition that
R0 vanishes when evaluated on S. Hence the fact that R0 vanishes along S
is equivalent to the fact that S is coisotropic, see subsection 2.5.

Because of δ([Ω0,Ω0]ι∇(Π)) = 0 we obtain a cohomology class [R0] in
H(BFV (E,Π), δ) ∼= C∞(E∗[1]). Since the isomorphism between the two
cohomologies is induced by setting the fibre coordinates (yj)j=1,...,e and
(bj)j=1,...,e to zero one sees that [R0] = 0. Hence R0 = −δ(Ω1) for some
Ω1 ∈ BFV1(E,Π). Consequently

[Ω0 + Ω1,Ω0 + Ω1]BFV mod BFV≥1(E,Π) = [Ω0,Ω0]ι∇(Π) + [Ω0,Ω1]G

= 2R0 + δ(Ω1) = 0.

claim: Given k > 0 and Ω(k) :=
∑

1≤i≤k Ωk with Ω0 as above, Ωi ∈

Γ(
∧(i+1)(E) ⊗

∧i(E∗)) and

[Ω(k),Ω(k)]BFV = 0 mod BFV≥k(E,Π),

there is an Ωk+1 ∈ BFVk+1(E,Π) of total degree +1 such that Ω(k + 1) :=
Ω(k) + Ωk+1 satisfies

[Ω(k + 1),Ω(k + 1)]BFV = 0 mod BFV≥(k+1)(E,Π).

Set 2Rk := [Ω(k),Ω(k)]BFV mod BFV≥(k+1)(E,Π), henceRk ∈ BFVk(E,Π).
By the graded Jacobi identity we know that [Ω(k), [Ω(k),Ω(k)]BFV ]BFV = 0.
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Moreover [Ω(k),Ω(k)]BFV = 2Rk mod BFV≥k+1(E,Π) implies that

0 = [Ω(k), [Ω(k),Ω(k)]BFV ]BFV = [Ω0, 2Rk]BFV mod BFV≥k(E,Π)

= δ(2Rk).

So Rk is δ-closed and using H(BFV (E,Π), δ) ∼= C∞(N∗[1]S) we can con-
clude that there is an element Ωk+1 ∈ BFVk+1(E,Π) of total degree +1
such that Rk = −δ(Ωk+1). It is easy to check that this element satisfies the
conditions of the claim.

After finitely many steps this procedure is finished thanks to the bound-
edness of the filtration BFV≥k(E,Π). The (well-defined) element

Ω :=
∑

k≥0

Ωk

satisfies properties 1. and 2. of the Proposition by construction. �

Definition 9. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold. Assume (E,Π) is a Poisson manifold and S is
a coisotropic submanifold.

A differential graded Poisson algebra (BFV (E,Π),DBFV := [Ω,−]BFV ,
[−,−]BFV ) as constructed above is referred to as a BFV-complex associated
to (E,Π).

We remark that there are several BFV-complexes associated to (E,Π).
However in [Sch] it is shown that different choices of a connection on E →
S and of the BFV-charge Ω yield isomorphic differential graded Poisson
algebras.

Corollary 3. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold. Assume (E,Π) is a Poisson manifold and S a
coisotropic submanifold.

The cohomology of (BFV (E,Π),DBFV ) is naturally isomorphic to the
Lie algebroid cohomology of S introduced in subsection 2.5.

Proof. We use the filtration of (BFV (E,Π),DBFV ) given byBFV (≥q,•)(E,Π)
to obtain a spectral sequence. Decomposing DBFV with respect to the de-
gree q yields

∑

k≥0 δk with δ0 = δ = [Ω0,−]G. In the proof of Propo-

sition 2 the isomorphism H(BFV (E,Π), δ) ∼= C∞(E∗[1]) was established.
This means that the spectral sequence under consideration collapses af-
ter one step and so H(BFV (E,Π),DBFV ) is naturally isomorphic to the
next sheet of the spectral sequence. Hence we have to compute the co-
homology of C∞(E∗[1]) with respect to the induced differential to obtain
H(BFV (E,Π),DBFV ).

It is straightforward to check that the induced differential does not de-
pend on the particular choice of Ω and that it is given by the restriction
of δ1 := [Ω0,−]ι∇(Π) + [Ω1,−]G to C∞(E∗[1]) = Γ(

∧

E). A possible choice
of Ω1 is given by −h(1/2[Ω0,Ω0]ι∇(Π)) with h being the homotopy defined
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in the proof of Proposition 2. In the local coordinates used in the proof of
Proposition 2 the induced differential is given by

[δ1] = ci

(

Πiβ|S
) ~∂

∂xβ
−

1

2

(

∂Πij

∂yk
|S

)

cicj
~∂

∂ck
(3)

which coincides with the Lie algebroid differential ∂S . Hence the second
sheet of the collapsing spectral sequence associated to (BFV (E,Π),DBFV )
is equal to the Lie algebroid complex (Γ(

∧

E), ∂S) associated to S. Con-
sequently there is an isomorphism between H(BFV (E,Π),DBFV ) and the
Lie algebroid cohomology of S. �

In particular one obtains

H0(BFV (E,Π),DBFV ) ∼= C∞(S) =

{f ∈ C∞(S) : X(f) = 0 for all X ∈ Γ(FS)}.

Due to the compatibility between DBFV and the BFV -bracket [−,−]BFV ,
the cohomology H(BFV (E,Π),DBFV ) carries the structure of a graded
Poisson algebra. This structure restricts to the structure of a Poisson algebra
on H0(BFV (E,Π),DBFV ) ∼= C∞(S). It is easy to show that

Lemma 7. The algebra isomorphism H0(BFV (E,Π),DBFV ) ∼= C∞(S)
maps the Poisson bracket induced from [−,−]BFV to [−,−]S defined in sub-
section 2.5.

Hence the BFV-complex (BFV (E,Π),DBFV , [−,−]BFV ) can be thought
of as some kind of “resolution” of the Poisson algebra (C∞(S), [−,−]S).

4. Connection to the strong homotopy Lie Algebroid

Let S be a coisotropic submanifold of a smooth finite dimensional Pois-
son manifold (M,Π). In section 3 a differential graded Poisson algebra
(BFV (E,Π),DBFV , [−,−]BFV ) was constructed such that the degree zero
cohomology H0(BFV (E,Π),DBFV ) is isomorphic to C∞(S) as an algebra
and the Poisson bracket induced from [−,−]BFV coincides with [−,−]S .

There is another “resolution” of the Poisson algebra (C∞(S), [−,−]S)
given by the Lie algebroid complex associated to S, enriched with compatible
higher operations. This structure was found by Oh and Park ([OP]) in the
symplectic setting and called “strong homotopy Lie algebroid” there. It can
also be derived as the classical limit of the Poisson Sigma model with bound-
ary conditions given by S ([CF]). Our main aim is to show that the strong
homotopy Lie algebroid is equivalent to (BFV (E,Π),DBFV , [−,−]BFV ) in
the appropriate sense: they are L∞ quasi-isomorphic, see Theorem 5 in sub-
section 4.2. We remark that there is a connection between these algebraic
structures and deformations of S, see [OP] and section 5. Moreover Kieser-
man showed in [Ki] that they capture very subtle properties of the foliation
FS := Π#(N∗S) associated to S.
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4.1. The strong homotopy Lie Algebroid. We follow the presentation
in [CF] and [Ca] where the connection to the derived brackets formalism
([V]) was made explicit.

Let S →֒ M be a submanifold of a smooth finite dimensional Poisson
manifold (M,Π). By choosing an embedding of the normal bundle of S as
a tubular neighbourhood inside M we obtain a finite rank vector bundle

E
p
−→ S equipped with a Poisson bivector field. We denote the embedding of

S into E as the zero section by i. Abusing notation we denote the Poisson
bivector field on E by Π. We remark that there is a natural identification
E ∼= NS (NS being the normal bundle of S in E).

There is a natural projection pr : V(E) → Γ(
∧

E) given by the unique
algebra morphism extending f 7→ f ◦ i on C∞(E) and

Γ(TE) → Γ(TSE) → Γ(E)

where E → S is identified with the vertical part of TSE → S. This pro-
jection admits a section s : Γ(

∧

E) → V(E): on functions g ∈ C∞(S) it is
given by s(g) := g ◦ p and on elements X ∈ Γ(E) one defines s(X) to be the
unique vertical extension of X that is constant along fibres of E → S.

One checks that s(Γ(
∧

E)) →֒ V(E) is an abelian Lie subalgebra of the
graded Lie algebra (V(E)[1], [−,−]SN ). Moreover ker(pr)[1] is a Lie subal-
gebra and V(E) = ker(pr) ⊕ s(Γ(

∧

E)). Consequently

(V(E)[1],Γ(∧E)[1], pr[1])

is a V-algebra (Definition 4).
The Poisson bivector field Π on E can be interpreted as a MC-element of

(V(E)[1], [−,−]SN ). By Theorem 1 the derived brackets associated to the
Poisson bivector field

µ̂k := Dk
Π : (Γ(∧E)[1])⊗k → Γ(∧E)[2](4)

define the structure of a (possibly non-flat) L∞[1]-algebra on Γ(
∧

E)[1].
This corresponds to the structure of a (possibly non-flat) L∞-algebra on
Γ(

∧

E). We denote the structure maps of the L∞-algebra by (µk)k∈N.
The submanifold S is coisotropic if and only if pr(Π) = 0. In this case the

L∞-algebra is flat (i.e. the zero order component µ0 ∈ Γ(
∧2E) vanishes)

and µ1 coincides with the Lie algebroid differential ∂S associated to S (see
subsection 2.5). Hence:

Theorem 3. Let S be a coisotropic submanifold of a smooth finite di-
mensional Poisson manifold (M,Π). Then (Γ(

∧

E), ∂S = µ1, µ2, · · · ) con-
structed as above is an L∞-algebra extending the Lie algebroid complex as-
sociated to S.

This Theorem first appeared in [OP] in the symplectic setting.

Definition 10. Let S be a coisotropic submanifold of a smooth finite di-
mensional Poisson manifold (M,Π). The strong homotopy Lie algebroid as-
sociated to S is the L∞-algebra (Γ(

∧

NS), ∂S = µ1, µ2, · · · ).
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Since (V(E)[1], [−,−]SN ) is a Gerstenhaber algebra and pr and s are
morphisms of algebras, the structure maps µk are graded multiderivations
with respect to the graded algebra structure: i.e.

µk(a1 ⊗ · · · ⊗ ak−1 ⊗ a · b) = µk(a1 ⊗ · · · ⊗ ak−1 ⊗ a) · b+

(−1)(|a1|+···+|ak−1|+2−n)|a|a · µk(a1 ⊗ · · · ⊗ ak−1 ⊗ b)
(5)

holds for all k and arbitrary homogeneous elements a1, . . . , ak−1, a, b of
Γ(

∧

E). In [CF] L∞-algebras on graded algebras with this property were
called P∞-algebras.

We remark that the derived brackets µk depend in general on the choice
of embedding φ : E →֒ M . However it was proved in [OP] in the sym-
plectic case and in [CS] in the Poisson case and for arbitrary submanifolds
(not necessary coisotropic) that different choices lead to L∞-isomorphic L∞-
algebras:

Theorem 4. The L∞-algebra structures constructed on Γ(
∧

(NS)) with the
help of two different embeddings of NS into M as tubular neighbourhoods of
S are L∞-isomorphic.

Let S be a coisotropic submanifold of (M,Π). By Theorem 3 there is a
nontrivial extension of the Lie algebroid complex (Γ(

∧

NS), ∂S) associated
to S to an L∞-algebra. As observed in subsection 2.5 the zero Lie algebroid
cohomology H0(Γ(

∧

NS), ∂S) is given by C∞(S). The binary operation µ2

descends to cohomology where it induces a Lie bracket. Since µ2 is a graded
biderivation with respect to the graded algebra structure the induced Lie
bracket will be a biderivation, i.e. C∞(S) inherits a Poisson bracket. A
computation shows that

Lemma 8. The algebra isomorphism H0(Γ(
∧

NS), ∂S) ∼= C∞(S) maps the
Poisson bracket induced from µ2 to [−,−]S as defined in subsection 2.5.

Consequently the P∞-algebra (Γ(
∧

NS), ∂S = µ1, µ2, . . . ) can be thought
of some kind of “resolution” of the Poisson algebra (C∞(S), [−,−]S).

4.2. Relation of the two Structures. Let S be a coisotropic subman-
ifold of a smooth finite dimensional Poisson manifold (M,Π). Lemma 7
in subsection 3.3 established that the differential graded Poisson algebra
(BFV (E,Π),DBFV , [−,−]BFV ) can be interpreted as a “resolution” of the
Poisson algebra (C∞(S), [−,−]S) introduced in subsection 2.5. The same is
true for the strong homotopy Lie algebroid (Γ(

∧

E), ∂S = µ1, µ2, . . . ) con-
structed in subsection 4.1 (see Lemma 8). Moreover Corollary 3 in subsec-
tion 3.3 established an isomorphism of graded algebrasH•(BFV (E,Π),DBFV ) ∼=
H•(Γ(

∧

E), ∂S).
A natural question to ask is how tight the connection between the BFV-

complex (BFV (E,Π),DBFV , [−,−]BFV ) and the P∞-algebra (Γ(
∧

E), ∂S =
µ1, µ2, . . . ) actually is. We provide an answer to this question:
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Theorem 5. Let E → S be a finite rank vector bundle over a smooth finite
dimensional manifold S. Assume (E,Π) is a Poisson manifold such that S
is a coisotropic submanifold.

Then there is an L∞ quasi-isomorphism between the BFV-complex
(BFV (E,Π),DBFV , [−,−]BFV ) associated to S (Definition 9 in subsection
3.3) and the strong homotopy Lie algebroid associated to S, i.e. (Γ(

∧

E), ∂S =
µ1, µ2, . . . ) (Definition 10).

An immediate consequence of Theorem 5 is:

Corollary 4. Let E → S be a finite rank vector bundle over a smooth finite
dimensional manifold S. Assume (E,Π) is a Poisson manifold such that S
is a coisotropic submanifold.

Then the formal deformation problems associated to the BFV-complex
(BFV (E,Π),DBFV , [−,−]BFV ) and to the strong homotopy Lie algebroid
(Γ(

∧

E), ∂S = µ1, µ2, . . . ) are equivalent.

Next we prove Theorem 5:

Proof. The strategy of the proof is as follows: the starting point is the BFV-
complex (BFV (E,Π),DBFV , [−,−]BFV ). As a by-product of the proof of
Proposition 2 in subsection 3.3 we obtained an isomorphism of graded al-
gebras H•(BFV (E,Π), δ) ∼= Γ(

∧•E). The • on the left-hand side refers to
the grading with respect to the total degree. Recall that δ is [Ω0,−]G where
Ω0 ∈ BFV (E,Π) is given by the tautological section of the bundle E → E
and G denotes the Poisson bivector field on E∗[1] ⊕ E [−1] representing the
fibre pairing between E∗[1] and E [−1].

More explicitly we considered pullbacks i∗ and p∗ along i : E∗ →֒ E∗[1] ⊕
E [1] and p : E∗[1] ⊕ E [−1] → E∗[1] and a homotopy h : BFV (E,Π) →
BFV (E,Π)[−1] such that h◦h = 0, i∗ ◦h = 0, h◦p∗ = 0 and δ ◦h+h◦ δ =
id− p∗ ◦ i∗ hold. We summarize the situation in the following diagram:

(C∞(E∗[1]), 0)
p∗

// (BFV (E,Π), δ), h.
i∗

oo(6)

By Theorem 2 in subsection 2.3 these data can be used for homological
transfer of an L∞-algebra structure from (BFV (E,Π), δ) to C∞(E∗[1]) =
Γ(

∧

E).
We will use these data to perform the homological transfer of the differen-

tial graded Lie algebra (BFV (E,Π),DBFV , [−,−]BFV ) to Γ(
∧

E) in terms
of diagrams as described in subsection 2.3. It will turn out that no conver-
gence issues arise and that the induced L∞-algebra structure on Γ(

∧

E) is a
P∞-algebra, i.e. the structure maps are graded multiderivations. Hence we
have two P∞-algebra structures on Γ(

∧

E): one is induced from the BFV-
complex and the second one is given by the strong homotopy Lie algebroid
associated to S. Since Γ(

∧

E) is generated by C∞(S) and Γ(E) as a graded
algebra it suffices to know the structure maps of the P∞-algebra structures
restricted to C∞(S) and Γ(E) respectively in order to be able to reconstruct
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them completely. We will check that the restricted structure maps of the
two P∞-algebras coincide, hence so do the full P∞-algebras.

Step 1) homological transfer in terms of trees:
We perform the homological transfer of the differential graded Lie algebra
structure on BFV (E,Π) along the diagram (6). What does the induced
L∞-algebra structure on Γ(

∧

E) look like?
The BFV-differential DBFV = [Ω,−]BFV can be decomposed as DBFV =

δ + DR satisfying δ ◦ δ = 0 and δ ◦ DR + DR ◦ δ + DR ◦ DR = 0. Recall
that BFV (E,Π) carries a bigrading given by BFV (p,q)(E,Π) := Γ(

∧p(E)⊗
∧q(E∗)). We have

h : BFV (p,q)(E,Π) → BFV (p,q+1)(E,Π),

DR : BFV (p,q)(E,Π) →
⊕

(p′>p,q′≥q,p′−q′=p−q)

BFV (p′,q′)(E,Π) and

[−,−]BFV =
(

[−.−]G + [−,−]ι∇(Π)

)

mod BFV≥1(E,Π).

Following subsection 2.3 the induced structure maps are given in terms
of oriented trees with edges decorated by non-negative integers. The set of
exterior vertices decomposes into the set of leaves (with edges pointing away
from them) and a unique root (with an edge pointing towards it). To each
such decorated tree T a map

mT := Γ(
∧

E)⊗#(leaves) → Γ(
∧

E)

is associated by the following rule: put [−,−]BFV at the trivalent vertices
and k copies of DR at edges decorated by the number k. Between con-
secutive operations [−,−]BFV or DR place a homotopy −h. We define

m̃T : BFV (E,Π)⊗#(leaves) → BFV (E,Π) to be the composition of all these
maps in the order given by the orientation of the tree T . Then we set
mT := i∗ ◦ m̃T ◦ (p∗)⊗#(leaves).

Because p∗(Γ(
∧

E)) ⊂ BFV (•,0)(E,Π) and (i∗)−1(Γ(
∧

E)) ⊂ BFV (•,0)(E,Π)
the operation mT associated to a decorated tree T can only be non-zero if
the corresponding m̃T maps the subspace (BFV (•,0)(E,Π))⊗#(leaves) to a

subspace having nonvanishing intersection with BFV (•,0)(E,Π).
Since the homotopy h increases the ghost-momentum degree by 1 and

[−,−]G is the only operation that decreases it by 1, there must be at least
as many trivalent vertices decorated by [−,−]G as there are hs. From

#([−,−]G) ≥ #(h) = #(DR) + #(trivalent vertices) − 1

it follows that

#(DR) + #(trivalent vertices decorated by ([−,−]BFV ) − ([−,−]G)) ≤ 1.

One can easily exclude the sharp inequality so there are two remaining cases:
Either 1) all the edges of the tree are decorated by zeros. In this case exactly
one of the trivalent vertices is decorated by ([−,−]BFV )− ([−,−]G) and the
other trivalent vertices are decorated by [−,−]G. Or 2) exactly one edge is
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decorated by 1 and all the others by zero. In this case all of the trivalent
vertices are decorated by [−,−]G.

Observe that in both case 1) and 2) the part of the “exceptional” oper-
ation DR and ([−,−]BFV − [−,−]G) respectively that actually contributes
to mT is the part of ghost-momentum degree 0. We decompose DBFV

with respect to the ghost degree DBFV =
∑

k≥0 δk with δ0 = δ, and hence

DR =
∑

k≥1 δk. The fact that DR is of total degree 1 implies that its com-
ponent of ghost-momentum degree 0 is given by δ1. The ghost-momentum
degree 0 component of ([−,−]BFV ) − ([−,−]G) is [−,−]ι∇(Π).

Moreover the identity [p∗(−), p∗(−)]G = 0 holds because p∗(Γ(
∧

E)) ⊂
BFV (•,0)(E,Π) and because [−,−]G is the graded Poisson bracket induced
from the fibre pairing between E∗[1] and E [−1]. Hence the only two types
of trees that contribute to the induced L∞-algebra structure on Γ(

∧

E) are
the following:

E

G

G

G

... G

G

G

G

1

...

Here the decoration E refers to [−,−]ι∇(Π), G refers to [−,−]G and the
decoration of the edges was left out whenever it is zero. We denote the maps
from (Γ(

∧

E))⊗n to Γ(
∧

E) associated to the trees on the left / right hand
side with n leaves by Ln and Rn respectively. Up to skew-symmetrization
and sign issues these two families of maps define the induced L∞-algebra
structure on Γ(

∧

E).

Step 2) P∞-property:

The L∞-algebra structure (Γ(
∧

E), ∂S = µ1, µ2, . . . ) satisfies the P∞ prop-
erty (5) as remarked before. Furthermore

Lemma 9. The L∞-algebra structure on Γ(
∧

E) induced from the differ-
ential graded Poisson algebra (BFV (E,Π),DBFV , [−,−]BFV ) satisfies the
P∞ property (5).

Proof. We first prove that the result of the evaluation of Ln (Rn) on elements
of the form

a1 ⊗ · · · ⊗ ak−1 ⊗ a · b⊗ ak · · · ⊗ an−1 ∈ Γ(
∧

E)⊗n.

can be expressed using Ln (Rn) evaluated on a1 ⊗ · · · a · · · ⊗ an−1 and on
a1 ⊗ · · · ⊗ b ⊗ an−1 only. Without loss of generality one may assume that
a1, · · · , a(n−1), a, b are all homogeneous.
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Consider the map Ln first and assume that k < (n − 1). By the graded
Leibniz identity for [−,−]G we have

[p∗(a · b), •]G = [p∗(a) · p∗(b), •]G =

p∗(a) · [p∗(b), •]G + (−1)|a||b|p∗(b) · [p∗(a), •]G.

Recall the definition of the homotopy h given during the proof of Proposition
2 in subsection 3.3:

h(fµ1...µk
(x, y, c)bµ1 · · · bµk) :=

∑

1≤µ≤s

bµ
(

∫ 1

0

∂fµ1...µk

∂yµ
(x, t · y, c)tkdt

)

bµ1 · · · bµk .

Hence h(p∗(X) ·Y ) = (−1)|X|p∗(X) ·h(Y ) because p∗X does not depend on
the coordinates yµ and bµ. So

(7) h([p∗(a · b), •]G) =

(−1)|a|p∗(a) · h([p∗(b), •]G) + (−1)(|a|+1)|b|p∗(b) · h([p∗(a), •]G)

holds. Applying consecutively

(1) [p∗(−),−]G and using the graded Leibniz identity together with
[p∗(−), p∗(−)]G = 0; and

(2) h and using h(X · p∗(Y )) = h(X) · p∗(Y )

leads to

Ln(a1 ⊗ · · · ⊗ ak−1 ⊗ a · b⊗ ak · · · ⊗ an−1) =

(−1)(|a1|+···+|ak−1|+k)|a|a · Ln(a1 ⊗ · · · ⊗ ak−1 ⊗ b⊗ ak · · · ⊗ an−1)+

(−1)(|a1|+···+|ak−1|+|a|+k)|b|b · Ln(a1 ⊗ · · · ⊗ ak−1 ⊗ a⊗ ak · · · ⊗ an−1)

for k < (n − 1). By similar reasoning this formula can be extended to the
cases k = (n− 1) and k = n.

We claim that

Rn(a1 ⊗ · · · ⊗ ak−1 ⊗ a · b⊗ ak · · · ⊗ an−1) =

(−1)(|a1|+···+|ak−1|+k)|a|a ·Rn(a1 ⊗ · · · ⊗ ak−1 ⊗ b⊗ ak · · · ⊗ an−1)+

(−1)(|a1|+···+|ak−1|+|a|+k)|b|b ·Rn(a1 ⊗ · · · ⊗ ak−1 ⊗ a⊗ ak · · · ⊗ an−1)

holds as well. For k < n the arguments previously applied to Ln go through.
For the case k = n we make use of the explicit formula for δ1 which was
derived in the proof of Corollary 3 in subsection 3.3:

δ1 = [Ω0,−]ι∇(Π) + [Ω1,−]G.

Hence δ1(p
∗(a · b)) = δ1(p

∗(a)) · p∗(b) + (−1)|a|p∗(a) · δ1(p
∗(b)) and applying

the established computation rules for h and [p∗(−),−]G yields the claimed
formula for Rn.
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If one takes the signs arising from the décalage-isomorphism and graded
symmetrization into account one obtains the signs as stated in (5). �

Step 3) localization:

The graded commutative associative algebra C∞(E∗[1]) = Γ(
∧

E) is gener-
ated by elements of degree 0 and 1, i.e. by C∞(S) and Γ(E). Hence it is
enough to know Ln and Rn restricted to (C∞(S) ⊕ Γ(E))⊗n ⊂ (Γ(

∧

E))⊗n

by Lemma 9. Since Γ(
∧

E) is concentrated in non-negative degrees and
the total degree of Ln and Rn is (2 − n), it suffices to know Ln and Rn on
elements of one of the following types:

A’) γ1 ⊗ · · · ⊗ γn for γi ∈ Γ(E),

B’) γ1 ⊗ · · · ⊗ γ(k−1) ⊗ f ⊗ γk ⊗ · · · ⊗ γ(n−1) for γi ∈ Γ(E), f ∈ C∞(S),

C’) γ1 ⊗ · · · ⊗ γ(k−1) ⊗ f ⊗ γk ⊗ · · · ⊗ γ(k+l−1) ⊗ g⊗ γ(k+l) ⊗ · · · ⊗ γ(n−2)

for γi ∈ Γ(E), f, g ∈ C∞(S).

We choose a trivializing cover U := (Uα)α∈A for the vector bundle E → S.
Let (ρα)α∈A be a partition of unity subordinated to U , i.e. a) ρα ∈ C∞(S),
b) supp(ρα) ⊂ Uα for every α ∈ A, c) (ρα)α∈A is locally finite (for every
x ∈ S there is an open neighbourhood U such that there are only finitely
many α ∈ A with ρα|U 6= 0) and d)

∑

α∈A ρα = 1.
For an arbitrary f ∈ C∞S we write

f = (
∑

α∈A

ρα)f =
∑

α∈A

(ραf) =:
∑

α∈A

fα

where fα is supported on Uα. Similarly we get γ =
∑

α∈A γα for any section
γ ∈ Γ(E). Since U is a collection of trivializing neighbourhoods of the
vector bundle E we can choose a local frame (eα1 , . . . , e

α
s ) of E restricted to

Uα. The section γα is supported on Uα and hence there are local functions
(w1

α, . . . , w
r
α) such that

γα =

s
∑

j=1

wjαe
α
j .

Using this decomposition of smooth functions and sections of E on elements
of (C∞(S) ⊕ Γ(E))⊗n of type A’), B’) or C’) shows that Ln and Rn are
totally determined by evaluating them for arbitrary α ∈ A on elements of
the form

A) eαj1 ⊗ · · · ⊗ eαjn ,

B) eαj1 ⊗ · · · ⊗ eαj(k−1)
⊗ f ⊗ eαjk ⊗ · · · ⊗ eαj(n−1)

with f ∈ C∞(Uα),

C) eαj1 ⊗ · · · ⊗ eαj(k−1)
⊗ f ⊗ eαjk ⊗ · · · ⊗ eαj(k+l−1)

⊗ g⊗ eαj(k+l)
⊗ · · · ⊗ eαj(n−2)

with f, g ∈ C∞(Uα).

Since we only used the P∞ property and the total degrees of the structure
maps Ln and Rn, the same is true for the structure maps µn of the strong
homotopy Lie algebroid (Γ(

∧

E), ∂S = µ1, µ2, . . . ) associated to S.
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Step 4) comparison of the restricted structure maps:
Let Uα be an open subset of the trivializing cover U . The aim is to compute
explicit coordinate expressions on Uα for the restricted structure maps of
the strong homotopy Lie algebroid and the structure induced from the BFV-
complex respectively.

Let (xβ)β=1,...s be coordinates for S and (yj)j=1,...e linear fibre coordinates
along E. We have to consider the graded Lie algebra V(E|Uα

)[1] with the
bracket given by

[
∂

∂xα
, xβ ]SN = δβα, [

∂

∂yi
, yj ]SN = δji .

The Poisson bivector field Π is given by

1

2
Παβ ∂

∂xα
∂

∂xβ
+ Παj ∂

∂xα
∂

∂yj
+

1

2
Πij ∂

∂yi
∂

∂yj
.

A straightforward computation of the restricted structure maps µ̂k of the
L∞[1]-algebra structure on Γ(

∧

E|Uα
)[1] yields

µ̂k(
∂

∂yj1
⊗ · · · ⊗

∂

∂yjk
) = (−1)k

1

2

(

∂

∂yj1
· · ·

∂

∂yjk

(

Πil ∂

∂yi
∂

∂yl

))

|S

µ̂k(
∂

∂yj1
⊗ · · · ⊗

∂

∂yj(k−1)
⊗ f(x)) = (−1)k

(

∂

∂yj1
· · ·

∂

∂yj(k−1)

(

Παl ∂f(x)

∂xα
∂

∂yl

))

|S

µ̂k(
∂

∂yj1
⊗ · · · ⊗

∂

∂yj(k−2)
⊗ f(x) ⊗ g(x)) =

(−1)(k−1)

(

∂

∂yj1
· · ·

∂

∂yj(k−2)

(

Παβ ∂f(x)

∂xα
∂g(x)

∂xβ

))

|S

Only the last expression picks up a sign under the décalage-isomorphism:
the exponent changes from (k − 1) to k.

To obtain concrete formulae for the induced L∞-algebra structure we first
make some general observations on the induced structure maps. All the
operations DR, h, [−,−]G and [−,−]ι∇(Π) are (multi-)differential operators
and the surjection from BFV (E,Π) to its cohomology Γ(

∧

E) involves the
evaluation of sections at S →֒ E. It follows that the induced structure
maps only depend on the jet-expansion of Π in transversal directions and
that the homotopy h can be replaced by its jet-version. For convenience let
us introduce the following local coordinates: (xβ)β=1,...,s on S, linear fibre
coordinates (yj)j=1,...,e along E, (cj)j=1,...,e along E∗[1] and (bj)j=1,...,e along
E [−1]. In these local coordinates the jet-version of the homotopy reads

ĥ(fj1...jk(x, y, c)bj1 · · · bjk) :=
∑

1≤µ≤e

1

N(f) + k
bµ

(

∂fj1...jk
∂yµ

(x, y, c)

)

bj1 · · · bjk

where N(f) is the polynomial degree of f with respect to the transverse
directions (yj)j=1,...e.
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In local coordinates the horizontal lift ι∇(Π) of Π is given by

1

2
Παβ

(

∂

∂xα
+ Γsαrcs

∂

∂cr
− Γsαrb

r ∂

∂bs

)(

∂

∂xβ
+ Γnβmcn

∂

∂cm
− Γnβmb

m ∂

∂bn

)

+Παj

(

∂

∂xα
+ Γsαrcs

∂

∂cr
− Γsαrb

r ∂

∂bs

)

∂

∂yj
+

1

2
Πij ∂

∂yi
∂

∂yj
.

Here Γ denotes the Christoffel symbols of the pull back connection on E [1]⊕
E∗[−1]. Moreover the restriction of

δ1(−) = [Ω0,−]ι∇(Π) + [Ω1,−]G

(with Ω1 := −1
2h([Ω0,Ω0]ι∇(Π))) to Γ(E) →֒ BFV (E,Π) reads

Γsαry
rcsΠ

αβ

(

∂

∂xβ
+ Γnβmcn

∂

∂cm

)

+ cmΠmα

(

∂

∂xα
+ Γsαrcs

∂

∂cr

)

−
∂

∂bµ

(

ĥ

(

1

2
ΠαβΓsαry

rcsΓ
n
βmy

mcn + ΠαkΓsβry
rcsck +

1

2
Πijcicj

))

∂

∂cµ
.

A straightforward but lengthy calculation with the restricted structure maps
of the induced P∞-algebra structure shows that all contributions involving
Christoffel-symbols cancel each other and that the formulae reduce to the
local expressions for µk derived above.

�

5. The Deformation Problem

A relation between BFV-complexes (see Definition 9 in subsection 3.3)
and so-called coisotropic graphs is presented. More precisely Theorem 6
in subsection 5.2 establishes a one-to-one correspondence between equiva-
lence classes of normalized MC-elements of a BFV-complex and coisotropic
graphs. Although the BFV-complex is L∞ quasi-isomorphic to the strong
homotopy Lie algebroid according to Theorem 5 in subsection 4.2 the two
structures capture different information in the non-formal regime. As a
demonstration of this phenomenon we provide a simple example of a coisotropic
submanifold inside a Poisson manifold where the strong homotopy Lie alge-
broid fails to detect obstructions to coisotropic deformations. In the formal
setting the normalization condition on MC-elements introduced in subsec-
tion 5.2 turns out to be superfluous. Furthermore we use the BFV-complex
to treat an example which was also considered in [OP] and [Z] and recover
some of the results derived there.

5.1. Deformations of coisotropic Submanifolds. Let S be a coisotropic
submanifold of a smooth finite dimensional Poisson manifold (M,Π). We fix
an embedding of the normal bundle of S into M . Hence we obtain a vector
bundle E → S such that E is equipped with a Poisson bivector field Π for
which S → E is coisotropic.
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Consider all embedded submanifolds of E. These form a subset S(E) of
the set P(E) of all subsets of E. There is a map

g̃raph : Γ(E) → S(E)

µ 7→ Sµ := {(x,−µ(x)) ∈ E : x ∈ S}.

We denote the intersection of the image of g̃raph with the space of all
coisotropic submanifolds of (E,Π) by C(E,Π), the set of coisotropic graphs.

Given the set C(E,Π) one can ask the question whether it is representable
in an algebraic way. The precise meaning of this is the following: consider
a differential graded Lie algebra (V, d, [−,−]). In subsection 2.1 the set of
MC-elements of (V, d, [−,−]) was defined to be

MC(V ) := {β ∈ V1 : d(β) +
1

2
[β, β] = 0}.

One can ask whether there is a differential graded Lie algebra (more gen-
erally an L∞-algebra) V such that MC(V ) = C(E,Π). We will show in
subsection 5.2 that this is the case if one chooses the differential graded
Poisson algebra (BFV (E,Π),DBFV , [−,−]BFV ) and imposes a normaliza-
tion condition.

We remark that a very special case of this situation occurs when one
considers Lagrangian submanifolds of symplectic manifolds. Let (M,Π) be
symplectic, i.e. Π# is assumed to be an isomorphism of bundles. Conse-
quently dim(M) must be 2n for some n ∈ N. A coisotropic submanifold L
of M is called Lagrangian if dim(L) = n. Using an extension of Darboux’s
Theorem due to Weinstein ([W1]) one can show that there is an embedding
of the normal bundle E of L into M as a tubular neighbourhood such that

C(E,Π) ∼= {γ ∈ Ω1(L) : dDR(γ) = 0}.

A generalization of this statement to coisotropic submanifolds S of sym-
plectic manifolds (M,Π) was investigated in [OP]. It was shown that

Cc(E,Π) ∼= MCc(Γ(∧E))

where Γ(
∧

E) is equipped with the structure of the strong homotopy Lie al-
gebroid associated to S, see Definition 10 in subsection 4.1. The superscript
c stands for “close” and refers to the fact that only sections sufficiently close
to the zero section are taken into account.

The arguments in [OP] heavily rely on Gotay’s study of coisotropic sub-
manifolds inside symplectic manifolds, see [G]. Gotay showed that the pull
back of the symplectic form to the submanifold determines the symplectic
form on a tubular neighbourhood (up to neighbourhood equivalence). In
particular this implies that there is an embedding of the normal bundle of a
coisotropic submanifold into the symplectic manifold such that the Poisson
bivector field is polynomial in fibre directions. This fails in the Poisson case.

The following example shows that the results concerning the deformation
problem of coisotropic submanifolds inside symplectic manifolds mentioned
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above do not carry over to the Poisson case: Consider R2 equipped with the
smooth Poisson bivector field

Π :=

{

0 for (x, y) = (0, 0)

exp(− 1
x2+y2

) ∂
∂x

∧ ∂
∂y

for (x, y) 6= (0, 0).

It vanishes to all orders at (0, 0) but is symplectic on R2\{(0, 0)}. The point
(0, 0) is a coisotropic submanifold and obviously

C(R2,Π) = {(0, 0)}.

However the strong homotopy Lie algebroid associated to (0, 0) is (R2, 0, . . . ),
so

MC(R2) ∼= R2.

Hence C(R2,Π) is not isomorphic to MC(R2).

5.2. (Normalized) MC-elements and the Gauge Action. Let E → S
be a finite rank vector bundle over a smooth finite dimensional manifold
S. Assume (E,Π) is a Poisson manifold such that S is a coisotropic sub-
manifold. The aim is to study the set of MC-elements and the deformation
problem associated to the BFV-complex (BFV (E,Π),DBFV , [−,−]BFV ),
see Definition 9 in subsection 3.3.

Recall that the BFV-differential DBFV is given by the adjoint action of
a special degree one element Ω which was constructed in subsection 3.3.
Consequently the MC-equation for the BFV-complex can be written as

[Ω + β,Ω + β]BFV = 0(8)

for β ∈ BFV 1(E,Π).

Definition 11. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold S. Assume (E,Π) is a Poisson manifold such
that S is a coisotropic submanifold.

The set of algebraic Maurer-Cartan elements associated to the BFV-complex
(BFV (E,Π),DBFV (−) = [Ω,−]BFV , [−,−]BFV ) is given by

Dalg(E,Π) := {β ∈ BFV 1(E,Π) : [Ω + β,Ω + β]BFV = 0}.

We remark that Dalg(E,Π) contains elements that do not possess a clear
geometric interpretation. Moreover −Ω is an element of Dalg(E,Π) that cor-
responds to the fact that E is a coisotropic submanifold of (E,Π). However
we would prefer to study coisotropic submanifolds of E that are “similar”
to S only, so they should at least be of the same dimension as S.

These defects can be cured with the help of a normalization condition on
β. By definition

BFV 1(E,Π) := Γ





⊕

k≥0

(∧(k+1)E ⊗ ∧kE∗)
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where E → E is the pull back bundle of E → S under E → S. Hence
β ∈ BFV 1(E,Π) decomposes uniquely into

β =
∑

k≥0

βk

with βk ∈ Γ(
∧(k+1) E ⊗

∧k E∗) =: BFV k+1,k(E,Π). In particular we obtain
a map

T : BFV 1(E,Π) → Γ(E)

β 7→ β0

which we call the truncation map. Furthermore there is a natural map p! :
Γ(E) → Γ(E) given by the pull back of sections.

Definition 12. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold S. Assume (E,Π) is a Poisson manifold such
that S is a coisotropic submanifold.

The set of normalized Maurer-Cartan elements associated to the BFV-
complex (BFV (E,Π),DBFV (−) = [Ω,−]BFV , [−,−]BFV ) is given by

Dnor(E,Π) := Dalg(E,Π) ∩ T−1(p!(Γ(E)).

Assume that β ∈ Dnor(E,Π), consequently

T (Ω + β) = Ω0 + p!(µ)

for a unique µ ∈ Γ(E). It is straightforward to check that the set zero(Ω0 +

p!(µ)) of zeros of the section Ω0+p
!(µ) is given by the submanifold g̃raph(µ) =:

Sµ of E. In conclusion we obtain a map

Z : Dnor(E,Π) → S(E)

β 7→ zero(T (Ω + β))

with S(E) denoting the set of embedded submanifolds of E.
We consider the adjoint action of BFV 0(E,Π) on BFV (E,Π). The Pois-

son algebra BFV 0(E,Π) comes equipped with a filtration by Poisson subal-
gebras BFV 0

≥r(E,Π) := BFV 0(E,Π) ∩ BFV≥r(E,Π) where BFV≥r(E,Π)

was defined as Γ(
∧

E ⊗
∧≥r E∗). Let B̃FV (E,Π) be the space of smooth

sections of the pull back bundle of
∧

E ⊗
∧

E∗ under E × [0, 1] → E. This
graded algebra inherits the structure of a graded Poisson algebra and all the
gradings (by ghost degree, ghost-momentum degree, total degree) and the fil-
tration by BFV≥r(E,Π) fromBFV (E,Π). In particular we obtain a Poisson

algebra B̃FV
0
(E,Π) which is filtered by Poisson subalgebras B̃FV

0

≥r(E,Π).
It acts on BFV (E,Π) by time-dependent endomorphisms which are deriva-
tions for both the associative algebra structure and the graded Poisson
bracket [−,−]BFV . We denote the Lie algebra of such time-dependent en-

domorphisms given by elements of B̃FV
0
(E,Π) by inn(BFV (E,Π)). Such

endomorphisms can be interpreted as time-dependent vector fields on the
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smooth graded manifold E [1] ⊕ E∗[−1] that preserve the Poisson bivector

field Π̂, see Corollary 1 in subsection 3.2.
The group of automorphisms Aut(BFV (E,Π)) is the space of all isomor-

phisms of the unital graded commutative associative algebra BFV (E,Π)
that preserve the total degree and the graded Poisson bracket [−,−]BFV .
An automorphism ψ is called inner if it is generated by an element of
inn(BFV (E,Π)). More precisely we impose that

• there is a family of automorphisms (ψt)t∈[0,1] with ψ0 = id and ψ1 =
ψ,

• there is a morphism of unital graded commutative associative alge-

bras and Poisson algebras ψ̂ : BFV (E,Π) → B̃FV (E,Π)

such that

• the composition of ψ̂ with the pull back along the inclusion E×{t} →
E × [0, 1] coincides with ψt,

• the time-dependent derivation of BFV (E,Π) that maps β to

(e, s) 7→
d

dt
|t=s

(

ψ̂(β)|e
)

is an element of inn(BFV (E,Π)).

We denote the subset of inner automorphisms of BFV (E,Π) by Inn(BFV (E,Π))
which can be checked to be a subgroup of Aut(BFV (E,Π)). Moreover

the filtration of B̃FV
0
(E,Π) by the Poisson subalgebras B̃FV

0

≥r(E,Π)
yields a filtration of Inn(BFV (E,Π)) by subgroups which we denote by
Inn≥r(BFV (E,Π)).

The group Aut(BFV (E,Π)) acts on Dalg(E,Π) via

(Θ̂, α) 7→ Θ̂(Ω + α) − Ω

and consequently so do all the groups Inn≥r(BFV (E,Π)). Observe that
the action of Inn≥2(BFV (E,Π)) on Dalg(E,Π) restricts to an action on
Dnor(E,Π).

Theorem 6. Let E → S be a finite rank vector bundle over a smooth finite
dimensional manifold S. Assume (E,Π) is a Poisson manifold such that S
is a coisotropic submanifold.

Mapping elements of BFV 1(E,Π) to the zero set of their truncation in-
duces a bijection between

(1) Dnor(E,Π)/Inn≥2(BFV (E,Π)) and
(2) C(E,Π).

Proof.
claim A: An element p!(µ) ∈ Γ(E) can be extended to a MC-element of
(BFV (E,Π),DBFV , [−,−]BFV ) if and only if

Sµ := {(x,−µ(x)) ∈ E|x ∈ S}
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is a coisotropic submanifold of (E,Π).

Given an arbitrary µ ∈ Γ(E) we want to construct a β ∈ Dalg(E,Π)
decomposing as

β =
∑

k≥0

βk

where βk ∈ Γ(
∧(k+1) E ⊗

∧k E∗) such that β0 = p!(µ) holds. This is a
generalization of the construction of Ω given in the proof of Proposition 2
in subsection 3.3.

First consider Ω0 + p!(µ) ∈ Γ(E). Obviously

[Ω0 + p!(µ),Ω0 + p!(µ)]G = 0

holds. Recall that G is the Poisson bivector field on E∗[1] ⊕ E [−1] that
corresponds to the fibre pairing between E and E∗. Consequently we obtain
a differential

δ[µ](−) := [Ω0 + p!(µ),−]G =: δ(−) + ∂µ(−).

In the proof of Proposition 2 in subsection 3.3 a homotopy h for δ was
defined satisfying h◦δ+δ ◦h = id−p∗ ◦ i∗ where p∗ : Γ(

∧

E) → BFV (E,Π)
is essentially given by the pull back p! and i∗ : BFV (E,Π) → Γ(

∧

E) is
given by natural restriction and projection maps. The concrete formula of
h implies that

h ◦ ∂µ + ∂µ ◦ h = 0

since p!(µ) is a section of Γ(E) ⊂ BFV (E,Π) that is constant along the
fibres of E → S and consequently

h ◦ δ[µ] + δ[µ] ◦ h = id− p∗ ◦ i∗.

Observe that the maps p∗ and i∗ are no longer morphisms of complexes with
respect to δµ.

Consider the diffeomorphism qµ : Sµ := {(x,−µ(x))|x ∈ S} → S and the

pull back vector bundle q!µ(E) → Sµ.

claim A.1: H•(BFV (E,Π), δ[µ]) ∼= Γ(
∧•(q!µE))

Since Sµ and S are diffeomorphic there is a vector bundle isomorphism be-

tween
∧

q!µ(E) and
∧

E which induces an isomorphism ϑ of graded algebras

between Γ(
∧

q!µ(E)) and Γ(
∧

E). It is straightforward to check that

p∗µ : Γ(∧q!µ(E))
ϑ
−→ Γ(∧E)

p∗

−→ BFV (E,Π)

and

i∗µ : BFV (E,Π)
i∗
−→ Γ(∧E)

ϑ−1

−−→ Γ(∧q!µ(E))

are chain maps between (BFV (E,Π), δµ) and (Γ(
∧

p!
µE), 0). In fact, p∗µ

is given by the unique extension of a section of
∧

q!µ(E) to a section of
∧

E ⊗
∧

E∗ that is constant along the fibres of E → E. Furthermore i∗µ is
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given by the composition of BFV (E,Π) → Γ(
∧

E) with the evaluation at
Sµ. Obviously i∗µ ◦ p

∗
µ = id and

h ◦ δ[µ] + δ[µ] ◦ h = id− p∗µ ◦ i
∗
µ

hold. This implies the claim A.1.
Having established claim A.1 the constructions of elements γ1, γ2, . . . with

γk ∈ Γ(
∧(k+1) E⊗

∧k E∗) such that Ω0+p!(µ)+γ1+γ2+· · · is a MC-elements
goes through as in the proof of Proposition 2 in subsection 3.3: One tries
to extend Ω0 + p!(µ) inductively and meets obstructions classes at each
level. The first obstruction class vanishes if and only if Sµ is a coisotropic

submanifold of E: 2R0 := [Ω0 + p!(µ),Ω0 + p!(µ)]ι∇(Π) gives a cohomology
class in H(BFV (E,Π), δµ), the evaluation of 2R0 at Sµ is 0 if and only if the
vanishing ideal of Sµ is a Lie subalgebra under the Poisson bracket [−,−]Π.
This is equivalent to Sµ being coisotropic. When the class [R0] is zero, we
can find γ1 with R0 = −δµ(γ1) which will be our first correction term. All

higher obstruction classes vanish due to claim A.1. Then setting β0 := p!(µ)
and βm := γm − Ωm for m > 1 yields a MC-element

β :=
∑

k≥0

βk

of the desired form.
claim B: Given two elements α and β of Dalg(E,Π) with T (α) = T (β) =

p!(µ) for some µ ∈ Γ(E), there is an element of Inn≥2(BFV (E,Π)) map-
ping α to β.

Observe that inner derivations given by the adjoint action of B̃FV
0

≥2(E,Π)
are nilpotent and therefore always integrate to an inner automorphism. As-
sume that β and α coincide up to order k > 0, i.e.

β − α = 0 mod BFV≥k(E,Π).

The MC-equation for β and α implies that

δ[µ](βk) = F (β0, . . . , β(k−1)) = F (α0, . . . , α(k−1)) = δ[µ](αk).

Here F is a function that can be constructed from the MC-equation: the
equation 1/2[Ω + β,Ω + β]BFV = 0 can be decomposed with respect to the
ghost-momentum degree. For the ghost-momentum degree k−1 one obtains
δ[µ](βk) plus other terms depending on (β0, . . . , β(k−1)) only. We denote the
sum of this other terms by −F .

Consequently δ[µ](βk −αk) = 0. By claim A.1 and the assumption k > 0

there is an element εk ∈ BFV (k+1,k+1)(E,Π) such that βk − αk = δ[µ](ǫk).
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Then

exp(−[ǫk,−]BFV )(α) = α− [ǫk, α]BFV mod BFV≥(k+1)(E,Π)

= α+ [α, ǫk]BFV mod BFV≥(k+1)(E,Π)

= α+ δ[µ](ǫk) mod BFV≥(k+1)(E,Π)

= β mod BFV≥(k+1)(E,Π)

so exp(−[ǫk,−])(α) and β coincide up to order k + 1.
Inductively one finds ε1, ǫ2, . . . , ǫN such that

exp(−[ǫN ,−]) · · · exp(−[ǫ2,−])exp(−[ǫ1,−])(α) = β.

Then the BCH-formula yields an ε ∈ BFV 0
≥2(E,Π) such that the inner

automorphism generated by its adjoint action on BFV (E,Π) maps α to
β. �

5.3. An Example. We consider an example that was first presented in [Z]
and that was also investigated in [OP]. Zambon showed that the space of
coisotropic deformations C(E,Π) “near” a fixed coisotropic submanifold S
cannot carry the structure of a (Fréchet) manifold because there exist “tan-
gent vectors” whose sum is not tangent to C(E,Π). Oh and Park showed that
this can be understood with the help of the strong homotopy Lie algebroid
(Γ(

∧

E), ∂s = µ1, µ2, . . . ) associated to S, see Definition 10 in subsection
4.1. The extension of elements in the first Lie algebroid cohomology to
MC-elements meets several obstructions, and the first of them is given by a
quadratic relation. Hence, the sum of solutions might fail to be a solution
again which explains Zambon’s observation.

Consider the vector bundle E = R2 × (S1)4 → (S1)4 with coordinates
(x1, x2, θ1, θ2, θ3, θ4) (θ denotes the angle-coordinate on S1). We equip E
with the symplectic form

ω = dθ1 ∧ dx1 + dθ2 ∧ dx2 + dθ3 ∧ dθ4

and define S := (S1)4 which is a coisotropic submanifold of E.
The BFV-complex BFV (E,ω−1) is given by the smooth functions on the

smooth graded manifold E × (R∗[1])2 × (R[−1])2 → E. We introduce fibre
coordinates (c1, c2) on (R∗[1])2 and (b1, b2) on (R[−1])2. Since the bundle E
is flat we can just set

[−,−]BFV =: [−,−]G + [−,−]ω

where [−,−]G denotes the graded Poisson bracket given by the pairing be-
tween (R∗[1])2 and (R[−1])2 and [−,−]ω is the Poisson bracket associated
to the symplectic form ω.

The element Ω0 reads c1x
1 + c2x

2 and it is closed with respect to the
graded Poisson bracket on the BFV-complex, so no further extension is
needed and Ω = Ω0. The BFV-differential DBFV of the BFV-complex is
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given by

D = x1 ∂

∂b1
+ x2 ∂

∂b2
+ c1

∂

∂θ1
+ c2

∂

∂θ2
.

It is straightforward to check that the cohomology with respect to DBFV

is given by periodic functions in the variables θ3 and θ4 tensored by the
Grassmann-algebra generated by c1 and c2.

The MC-equation reads

[Ω0 + β,Ω0 + β]BFV = 0

and if we assume that β is a DBFV -cocycle it reduces to

[β, β]ω = 0.

If we impose that β is a normalized MC-element (see subsection 5.2) it only
depends on the variables θ1, θ2, θ3 and θ4. In this case the MC-equation
reduces further to

{β, β}S = 0.(9)

where

{f, g}S :=
∂f

∂θ4

∂g

∂θ3
−
∂f

∂θ3

∂g

∂θ4
.

Condition (9) was also found in [OP].
Consider an element c1f

1 + c2f
2 where f1 and f2 depend on the angle-

variables only. When does this section define a coisotropic submanifold? In
the proof of Proposition 6 in subsection 5.2 we showed that this is equivalent
to

[Ω0 + c1f
1 + c2f

2,Ω0 + c1f
1 + c2f

2]ω(10)

being exact with respect to δ[c1f
1 + c2f

2] := (x1 + f1) ∂
∂b1

+ (x2 + f2) ∂
∂b2

.
Computing the bracket (10) yields

2c1c2(
∂f1

∂θ2
−
∂f2

∂θ1
+
∂f1

∂θ4

∂f2

∂θ3
−
∂f2

∂θ4

∂f1

∂θ3
).

We denote this expression by H. It only depends on the angle-variables.
Exactness of H translates into the condition that there exists a pair of
functions g1 and g2 that might depend on all variables on E such that

δ[c1f
1 + c2f

2](b1g1 + b2g2) = (x1 + f1)g1 + (x2 + f2)g2 = H.

Since H is constant in x1 and x2 the left hand side (x1 +f1)g1 +(x2 +f2)g2
is too. Evaluating it at x1 = −f1 and x2 = −f2 implies that H must
vanish identically. Hence a section of the bundle

∧

(R2) × E → E given by
c1f

1 + c2f
2 defines a coisotropic submanifold iff

∂f1

∂θ2
−
∂f2

∂θ1
+
∂f1

∂θ4

∂f2

∂θ3
−
∂f2

∂θ4

∂f1

∂θ3
= 0.

Up to different sign conventions this condition coincides with the one given
in [Z], where it was derived in an analytical context.
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5.4. Formal Deformations of coisotropic Submanifolds. Let E → S
be a finite rank vector bundle over a smooth finite dimensional manifold S.
Assume (E,Π) is a Poisson manifold such that S is coisotropic.

We introduce a formal parameter ε of degree 0 and consider the graded
commutative algebra BFV (E,Π)[[ε]]. It inherits the structure of a dif-
ferential graded Poisson algebra (BFV (E,Π)[[ε]],DBFV , [−,−]BFV ) from
BFV (E,Π), see Definition 9 in subsection 3.3. We define the space of for-

mal MC-elements by

Dfor(E,Π) := {β ∈ εBFV (E,Π)[[ε]] : [Ω + β,Ω + β]BFV = 0}.

Recall that Ω is a degree 1 element of BFV (E,Π) such that [Ω,Ω]BFV = 0
and if one decomposes Ω with respect to the ghost-momentum degree, i.e.

Ω =
∑

k≥0

Ωk

with Ωk ∈ Γ(
∧(k+1) E ⊗

∧k E∗), Ω0 is required to be the tautological section
of E → E.

In subsection 5.2 we introduced B̃FV
0
(E,Π) and its action by deriva-

tions on BFV (E,Π). In the formal setting one considers εB̃FV
0
(E,Π)[[ε]]

and its action on BFV (E,Π)[[ε]]. Since the action by such a derivation is
pro-nilpotent, it always integrates to an automorphism of the graded Pois-
son algebra (BFV (E,Π)[[ε]], [−,−]BFV ). We denote the subgroup of these
automorphisms by Innfor(BFV (E,Π)). As explained in subsection 5.2 this
group naturally acts on Dfor(E,Π) by

Innfor(BFV (E,Π)) ×Dfor(E,Π) → Dfor(E,Π)

(Ψ, β) 7→ Ψ(Ω + β) − Ω.

Throughout subsection 5.2 we had to fix a normalization condition on the
MC-elements of (BFV (E,Π),DBFV , [−,−]BFV ) in order to make connec-
tion to the geometry of coisotropic submanifolds of (E,Π). We considered
the truncation map T : BFV 1(E,Π) → Γ(E) and imposed that the image
of a MC-element β under T has to lie in the image of the pull back map
Γ(E) → Γ(E). In the formal setting no normalization condition is needed
due to the following

Lemma 10. For every β ∈ Dfor(E,Π) there is a Ψ ∈ Innfor(BFV (E,Π))
such that the image of Ψ(β) under T : BFV 1(S,Π)[[ε]] → Γ(E)[[ε]] is given
by a pull back from εΓ(E)[[ε]].

Proof. The element β ∈ Dfor(E,Π) ⊂ εBFV 1(E,Π)[[ε]] decomposes uniquely
into

β =
∑

k≥0

βk

41



with βk ∈ εΓ(
∧(k+1) E ⊗

∧k E∗)[[ε]]. In particular β0 ∈ εΓ(E)[[ε]] which we
further decompose as

β0 =
∑

l≥1

β0(l)ε
l.

Consider the cocycle [β0(1)] ∈ H(BFV (E,Π), δ). Using the homotopy
h introduced in the proof of Proposition 2 in subsection 3.3 one finds a
section β̃0(1) ∈ εΓ(E) that is a pull back from a section of εΓ(E) such

that [β0(1)] = [β̃0(1)]. Hence there is γ(1) ∈ εΓ(E ⊗ E∗) satisfying β0(1) =

β̃0(1)+δ(γ(1)). The automorphism exp([γ(1),−]BFV ) maps the MC-element
Ω + β to another one whose image under the truncation map modulo ε2 is
given by

Ω0 + β0(1) − δ(γ(1)) = Ω0 + β̃0(1),

i.e. the new MC-element has the desired property modulo ε2.
Let us assume that we established β0 = p!(µ) modulo εk for some µ ∈

εΓ(E)[[ε]]. Consider the δ-cocycle β0(k). As before there is γ(k) ∈ εkΓ(E ⊗
E∗) and a pull back section β̃0(k) ∈ εkΓ(E) such that

β0(k) = β̃0(k) + δ(γ(k))

holds. We consider the inner automorphism exp([γ(k),−]BFV ) which maps

the MC-element Ω + β to another one whose truncation modulo ε(k+1) is
given by

Ω0 +
∑

1≤m≤k

β0(m) − δ(γ(k)) = Ω0 +
∑

1≤m≤(k−1)

β0(m) + β̃0(k).

Using induction with respect to the polynomial degree in ε, the fact that the
formal variable ring is complete with respect to the ε-adic topology and the
BCH-formula one finds an appropriate formal inner automorphism Ψ. �

In subsection 2.5 we stated that one possible characterization of coisotropic
submanifolds uses vanishing ideals: a submanifold S of a Poisson manifold
(E,Π) is coisotropic if and only if its vanishing ideal IS := {f ∈ C∞(E) :
f |C = 0} is a Lie subalgebra of the Poisson algebra of functions. A multi-
plicative ideal of a Poisson algebra that in addition is a Lie subalgebra is
called a coisotrope, see [W2].

Definition 13. Let E → S be a finite rank vector bundle over a smooth
finite dimensional manifold S. Assume (E,Π) is a Poisson manifold such
that S is coisotropic.

A formal deformation of S is a coisotrope I of (C∞(E)[[ε]], [−,−]Π) such
that I mod ε = IS. We denote the set of formal deformations of S by
Cfor(E,Π).

Lemma 11. Let E → S be a finite rank vector bundle over a smooth finite
dimensional manifold S. Assume (E,Π) is a Poisson manifold such that S
is coisotropic.
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There is map Γ from Dfor(E,Π) to Cfor(E,Π) such that

• Γ is constant along the Inn≥1
for(BFV (E,Π))-orbits of Dfor(E,Π),

• Γ(0) is the R[[ε]]-linear extension of the vanishing ideal IS of S.

Proof. Given β ∈ Dfor(E,Π) we want to construct a coisotrope I(β) of
(C∞(E)[[ε]], [−,−]Π) in a way that is invariant under the action of the group

Inn≥1
for(BFV (E,Π)) on Dfor(E,Π).

Consider the truncation β0 ∈ εΓ(E)[[ε]] of β. We choose a trivializing
atlas (Uα)α∈A for the vector bundle E → S which yields a trivializing atlas
for the vector bundle E → E. On each chart Uα we pick a local frame
(cαj )j=1,...,e for the bundle E and obtain a unique decomposition

(Ω0 + β0)|Uα
=

e
∑

j=1

hjαc
α
j

with hjα ∈ C∞(Uα × Re)[[ε]] for j = 1, . . . , e. Let Jα be the multiplicative

ideal of C∞(Uα × Re)[[ε]] generated by (hjα)j=1,...,e. It is straightforward to
conclude from β ∈ Dfor(E,Π) that Jα is a coisotrope of the Poisson algebra
(C∞(Uα × Re)[[ε]], [−,−]Π|Uα×Re).

Observe that the family of ideals (Jα)α∈A can be glued together, i.e. given
Uα ∩ Uβ =: Uαβ 6= ∅ then f ∈ C∞(Uαβ × Re) lies in the restriction of Jα
to Uαβ × Re if and only if it lies in the restriction of Jβ to Uαβ × Re. This
stems from the fact that the transition matrices Uαβ×Re → GL(Re) for the
vector bundle E are invertible.

We define I(β) to be the set of elements of C∞(E)[[ε]] whose restriction
to every coordinate domain Uα × Re lies in Jα. An argument similar to the
gluing statement above shows that I(β) is in fact independent of the choice of
atlas and one easily checks that it is a coisotrope and that I(β) mod ε = IS
holds.

Furthermore I(β) is not affected if we let a bundle automorphism act on
the section β0. Notice that the action of εBFV≥1(E,Π)[[ε]] onBFV (E,Π)[[ε]]

induces an action on BFV (1,0)(E,Π)[[ε]] = Γ(E)[[ε]] which coincides with
the action given by

BFV (1,1)(E,Π) → Γ(E ⊗ E∗) ∼= Γ(End(E))
exp
−−→ Γ(GL(E)).

From this the Inn≥1
for(BFV (E,Π))-equivariance of β 7→ I(β) follows. �

Appendix A. Details on the Homotopy Transfer

This appendix provides background information on the material presented
in subsection 2.3. The aim is to prove Theorem 2 which is a central technical
tool in sections 3 and 4. We first relate the homotopy transfer to integration
over an isotropic subspace in the BV-Formalism. Then we check that the
formulae given in 2.3 actually work. All the results are well-known to the
experts and we do not claim any originality related to this treatment.

43



A.1. Connection to the BV-Formalism. We present a heuristic deriva-
tion of the formulae for the homotopy transfer as presented in subsection
2.3. It makes use of the BV-Formalism which was introduced by Batalin and
Vilkovisky. In the case of A∞-algebras a similar treatment can be found in
[Ka].

In the finite dimensional setting the BV-Formalism was made rigorous by
Schwarz, see [Sw]. Although not justified at mathematical level of rigor in
the infinite-dimensional setting in general, the BV-Formalism serves as a way
to obtain formulae for the homotopy transfer which can be checked to work
using purely algebraic manipulations a posteriori. We remark that there are
certain (infinite-dimensional) situations where a mathematical treatment
can be provided – see [Co] for instance.

Let V be a graded vector space. In subsection 2.1 the one-to-one corre-
spondence between L∞-algebra structures on V and codifferentials of S(V [1])
was explained. If one assumes that V is finite dimensional, the space of
coderivations of the coalgebra S(V [1]) is in bijection to the space of deriva-
tions of the algebra S(V ∗[−1]) =: C∞(V [1]), i.e. vector fields on V [1]. Un-
der this bijection codifferentials correspond to so called cohomological vector

fields, i.e. derivations of degree 1 that square to zero. Hence there is a one-
to-one correspondence between L∞-algebra structures on V and homological
vector fields on V [1]. Moreover flat L∞-algebras are encoded in homological
vector fields that vanish at 0 ∈ V [1].

The space of multivector fields on V [1] can be described as the space
of functions on the smooth graded manifold T ∗[1](V [1]) = V [1] ⊕ V ∗[0].
Being a shifted cotangent bundle, this smooth graded manifold carries a
graded symplectic structure. Equivalently the graded commutative algebra
C∞(T ∗[1](V [1])) carries the structure of a graded Poisson bracket [−,−]BV of
degree −1 called the BV-bracket. The space of vector fields forms a Poisson
subalgebra and a vector field X on V [1] is cohomological if and only if
[X,X]BV = 0. This equation is called the classical master equation.

There is a bijection between the space of homomorphisms Hom(V [1], V )
of V [1] of degree −1 and the graded vector space V ∗[−1] ⊗ V [0]. Using a
basis (γi) of V [0] and the dual basis (γi) of V ∗[−1] the identity id ∈ End(V )
yields an element γi ⊗ γi. One defines the following operator of degree −1
on C∞(V [1] ⊕ V ∗[0])

∆ :=
∂2

∂γi∂γi

which is called the BV-operator. It is straightforward to check that ∆◦∆ = 0.
However ∆ is not a derivation with respect to the graded commutative
associative product of C∞(V [1]⊕V ∗[0]). The deviation to being a derivation
is measured by the BV-bracket [−,−]BV , i.e.

∆(X · Y ) − ∆(X) · Y − (−1)|X|X · ∆(Y ) = (−1)|X|[X,Y ]BV
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for homogeneous X and arbitrary Y in C∞(V [1] ⊕ V ∗[0]). The quadruple
(C∞(V [1]⊕V ∗[0]), ·,∆, [−,−]BV ) is an example of a BV-algebra. Given such
an algebra one can write down the quantum master equation:

∆(X) +
1

2
[X,X]BV = 0.

The importance of this equation is due to the identity

∆(eX) = (∆(X) +
1

2
[X,X]BV )eX .

Hence eX is ∆-closed if and only if X satisfies the quantum master equation.
Let X be a cohomological vector field on a graded vector space V [1] which

vanishes at 0, i.e. V [1] is equipped with the structure of a flat L∞[1]-algebra.
Denote the differential of this L∞[1]-structure by δ and the corresponding
cohomology by H[1]. Suppose that there are chain maps i : H[1] →֒ V [1]
(injective) and p : V [1] → H[1] (surjective) such that p ◦ i = idH[1]. Hence
V [1] splits as a graded vector space into A[1] ⊕H[1]. We assume existence
of a homotopy h : V [1] → V such that

δ ◦ h+ h ◦ δ = idV [1] − i ◦ p.

The kernel of this map is a graded vector subspace of V [1]. We consider its
intersection with A[1] which we denote by K[1]. The conormal bundle L[1]
of K[1] as a graded vector subspace of A[1] is a Lagrangian vector subspace
of T ∗[1](A[1]) and an isotropic subspace of T ∗[1](V [1]).

Given a Lagrangian vector subspace L[1] of T ∗[1](A[1]) there is a well-
defined notion of integration

∫

L[1]
: C∞(T ∗[1](A[1]) → R

under suitable convergence assumptions, see [Sw]. The connection between
the quantum master equation and the integration theory is

Theorem 7. • Assume S ∈ C∞(T ∗[1](A[1])) is ∆-closed and let L[1]
and L′[1] be two cobordant Lagrangian submanifolds of T ∗[1](A[1]).
Then

∫

L[1] S =
∫

L′[1] S.

• Assume S ∈ C∞(T ∗[1](A[1])) is ∆-exact and let L[1] be any La-
grangian submanifold of T ∗[1](A[1]). Then

∫

L[1] S = 0.

The proof in the finite dimensional setting can be found in [Sw].
Using the splitting V [1] = A[1]⊕V [1] and the induced splitting of T ∗[1](V [1])

one can extend
∫

L[1] to a map
∫

L[1]
: C∞(T ∗[1](V [1])) → C∞(T ∗[1](H[1])).

Furthermore the BV-operator ∆ also decomposes into ∆A + ∆H . Due to
Theorem 7,

∫

L[1] is a chain map between the complexes (C∞(T ∗[1](V [1])),∆)

and (C∞(T ∗[1](H[1])),∆H[1]).
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One can apply the BV-formalism as follows: interpret a vector field Z on
V [1] as a function on T ∗[1](V [1]) and assume that it satisfies the quantum
master equation. Hence eZ is ∆-closed. Apply the map

∫

L[1] to obtain a

function Y ′ on T ∗[1](H[1]) that satisfies the quantum master equation with

respect to ∆H . If one assumes that there is a function Z ′ such that eZ
′

= Y ′

it follows that Z ′ is a vector field that satisfies the quantum master equa-
tion. This procedure has a physical interpretation in terms of integrating
out ultraviolet degrees of freedom. Moreover there is a purely algebraic in-
terpretation of the integration map

∫

L[1] in terms of certain graphs, known

as Feynman diagrams.
It can be physically justified that in the “classical limit” the whole pro-

cedure reduces to the following: start with a cohomological vector field X
on V [1], translate it to a function on T ∗[1](V [1]). Using the tree-level part
of the Feynman diagrams to “integrate” over the isotropic subspace L[1]
one obtains a cohomological vector field on H[1]. If one reinterprets this in
terms of L∞[1]-algebra structures one recovers the procedure for homological
transfer along contractions as presented in subsection 2.3.

Going beyond the tree-level in this integration procedure yields richer
structures, see [Co] and [Mn] for instance.

A.2. Transfer of differential complexes.

Lemma 12. Let (X, d, h, i, pr) be a graded vector space equipped with con-
traction data and a finite compatible filtration, i.e. a collection of graded
subvector spaces

X = F0X ⊇ F1X ⊇ · · · ⊇ FnX ⊇ F(n+1)X ⊇ · · ·

such that FNX = {0} for N large enough, satisfying

• d(FkX) ⊂ FkX for all k ≥ 0 and
• h(FkX) ⊂ FkX for all k ≥ 0.

Furthermore suppose X is equipped with the structure of a differential com-
plex (X,D) such that

• (D − d)(FkX) ⊂ F(k+1)X.

Then the cohomology H of (X, d) is naturally equipped with the structure of
a differential complex and there is a well-defined chain map ĩ : H → X.

Proof. Set DR := D − d, it follows from D2 = (d + DR)2 = 0 and d2 = 0
that

DR ◦ d+ d ◦DR +D2
R = 0
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holds. In this special case the formulae for the induced structure given in
subsection 2.3 reduce to

D := p ◦ D̃ ◦ i where

D̃ := DR





∑

k≥0

(−hDR)k



 .

claim 1: D ◦ D = 0.
We compute

−d(D̃) = DRDR(
∑

m≥0

(−hDR)m) +DRd(
∑

m≥0

(−hDR)m)

= DRDR(
∑

m≥0

(−hDR)m) +DRip(DR ◦
∑

m≥0

(−hDR)m)

−DRDR(
∑

m≥0

(−hDR)m) +DRhd(DR ◦
∑

m≥0

(−hDR)m)

= D̃ipD̃ + D̃d

and consequently

D2 = pD̃i ◦ pD̃i = 0.

The formulae for the L∞[1]-morphism given in subsection 2.3 reduce to

ĩ := (
∑

k≥0

(−hDR)k)i.

claim 2: ĩ is a chain map from (H,D) to (X,D).
First we rewrite ĩ as

ĩ = (id− hD̃)i

and compute

D ◦ ĩ = (d+DR)(id − hD̃)i = d(−hD̃)i+ D̃i

= ipD̃i+ hd(D̃)i = (id − hD̃)i ◦ pD̃i = ĩ ◦ D.

�

A.3. Transfer of differential graded Lie algebras. We prove Theorem
2, subsection 2.3: We are given contraction data (X, d, h, i, p) and the struc-
ture of a differential graded Lie algebra (X,D, [−,−]). In subsection A.2 we

set DR := D − d and defined D̃ and D respectively. We use the décalage-
isomorphism to translate the graded Lie bracket into a graded symmetric
operation which we denote by {−,−} from now on.

The description of the induced structure maps can be rephrased as follows:
consider an oriented trivalent tree T with n leaves whose edges are decorated
by non-negative integers as introduced in subsection 2.3. One can associate
a map Φ(T ) := m̃T : (X[1])⊗n → X[1] to T by placing {−,−} at its trivalent
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vertices, copies of DR at all its edges and −h between two consecutive such
operations. Let

ν̃k :=
∑

σ∈Σk

∑

[T ]∈[T](k)

1

|Aut(T )|
m̃T

and observe that νk from subsection 2.3 coincides with p ◦ ν̃k ◦ i⊗k.
In subsection 2.1 we introduced the family of Jacobiators associated to

a family of maps. By definition a family of maps constitutes an L∞[1]-
algebra structure if the associated Jacobiators vanish. Denote the family of
Jacobiators associated to (νk : Sk(H[1]) → H[2]) by (Jn). We can write

Jn = p ◦ J̃n ◦ i⊗n with

J̃n(x1 · · · xn) :=

=
∑

r+s=n

∑

σ∈(r,s)−shuffles

sign(σ) ν̃s+1(ipν̃r(xσ(1)⊗· · ·⊗xσ(r))⊗xσ(r+1)⊗· · ·⊗xσ(n)).

claim A: −d
(

∑

σ∈Σk

∑

[T ]∈[[T]](n)
1

|Aut(T )|σ
∗m̃T

)

i⊗n = J̃ni⊗n

To prove this claim we introduce an extended graphical calculus: we allow
to add one special edge in every tree which is marked either by a “◦” or a “×”
and require that the special edge is decorated by two non-negative integers:

m n

m n

We call oriented decorated trees with a special edge of the first kind
pointed and with a special edge of the second kind truncated. Denote the
space of pointed oriented decorated trees by T◦ and the space of truncated
oriented decorated trees by T×. We extend Φ to trees with marked special
edges: instead of composing two consecutive operations of degree 1 by ◦−h◦
we use ◦ip◦ at the pointed edge and ordinary composition at the edge with
a cross. Moreover one has to add the sign given by (−1) to the powers of
the sum of all inputs left to the truncated or pointed edge.

One can easily check that

∑

σ∈Σk

∑

[T ]∈[[T]](n)

1

|Aut(T )|
σ∗Φ(P (T )) = J̃n

holds where P (T ) is the sum of all ways to change an ordinary edge of T
into a pointed one. Consequently claim A follows from

claim A.1:

−d





∑

σ∈Σn

∑

[T ]∈[[T]](n)

1

|Aut(T )|
σ∗m̃T



 i⊗n =





∑

σ∈Σk

∑

[T ]∈[[T]](n)

1

|Aut(T )|
σ∗Φ(P (T ))



 i⊗n.
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We prove claim A.1. by induction over the number of leaves n. For n = 1
the claim is simply the equation

−dD̃i = D̃ipD̃i

which was established in subsection A.2. The inductive step uses the iden-
tities

−dΦ(
n

) =
∑

r+s=n+1

Φ(
r s

) −
∑

r+s=n

Φ(
r s

) +
∑

r+s=n

Φ(
r s

) + Φ(
n

)d

and

−d{X,Y } = {dX, Y } + (−1)|X|{X, dY } +

+ {DRX,Y } + (−1)|X|{X,DRY } +DR{X,Y }.

Computing the left hand side of the equation in claim A.1. successively
leads to the right hand side plus

∑

σ∈Σn

∑

[T ]∈[T](n)

1

|Aut(T )|
σ∗Φ(X(T ))

where X(T ) is the sum of all ways to change an ordinary interior edge of T
into a truncated one which is decorated by (0, 0) . The evaluation of this
sum at x1 ⊗ · · · ⊗ xn contains terms of the form

∑

σ∈Σn

sign(σ)
∑

r+s+t=n

1/2
∑

[U ]∈[T](r),[V ]∈[T](s),[W ]∈[T](t)

({{−h ◦ Φ(U)(xσ(1) · · · xσ(r)),

−h ◦ Φ(V )(xσ(r+1) · · · xσ(r+s))},−h ◦ Φ(W )(xσ(r+s+1) · · · xσ(n))}).

Since the expression in the last two lines is of the form {{a, b}, c} and the
sum runs over all permutations with appropriate signs it vanishes due to
the graded Jacobi identity. Hence Jn = pJ̃ni⊗n = p(d(. . . )) = 0 and con-
sequently the induced structure maps (νk : Sk(H[1]) → H[2]) define an
L∞[1]-algebra structure on H[1].

It remains to show that the maps λn : Sn(H[1]) → X[1] defined in
subsection 2.3 establish an L∞[1]-morphism between (H[1], ν2, ν2, . . . ) and
(X[1],D, {−,−}). We give explicit formulae for the identities that must be
checked in order to prove that we obtain an L∞-morphism:

−D(h ◦ ν̃n(x1 ⊗ · · · ⊗ xn))

+1/2
∑

r+s=n

∑

σ∈(r,s)−shuffles

sign(σ){h ◦ ν̃r(xσ(1) ⊗ · · · ⊗ xσ(r)),

h ◦ ν̃s(xσ(r+1) ⊗ · · · ⊗ xσ(n))}

+
∑

p+q=n

∑

τ∈(q,p)−shuffles

sign(τ)h ◦ ν̃p+1(ip ◦ ν̃q(xτ(1) ⊗ · · · ⊗ xτ(q)) ⊗

⊗xτ(q+1) ⊗ · · · ⊗ xτ(n))

−ipν̃n(x1 ⊗ · · · ⊗ xn)
49



has to vanish identically for all n ≥ 2 (the case n = 1 was dealt with in
subsection A.2).

It is straightforward to check that the expression

• in the second and third line is equal to B := ν̃n +DRhν̃
n,

• in the fourth line is equal to C := h
(

∑

σ∈Σn

∑

[T ]∈[[T]](n)
1

|Aut(T )|σ
∗Φ(P (T ))

)

,

• in the first line is equal to −ν̃n + ipν̃n + hdν̃n −DRhν̃
n.

The identity −dν̃ni⊗i =
(

∑

σ∈Σn

∑

[T ]∈[[T]](n)
1

|Aut(T )|σ
∗Φ(P (T ))

)

i⊗n im-

plies that everything cancels.
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