181 research outputs found

    Stochastic Perturbations in Vortex Tube Dynamics

    Full text link
    A dual lattice vortex formulation of homogeneous turbulence is developed, within the Martin-Siggia-Rose field theoretical approach. It consists of a generalization of the usual dipole version of the Navier-Stokes equations, known to hold in the limit of vanishing external forcing. We investigate, as a straightforward application of our formalism, the dynamics of closed vortex tubes, randomly stirred at large length scales by gaussian stochastic forces. We find that besides the usual self-induced propagation, the vortex tube evolution may be effectively modeled through the introduction of an additional white-noise correlated velocity field background. The resulting phenomenological picture is closely related to observations previously reported from a wavelet decomposition analysis of turbulent flow configurations.Comment: 16 pages + 2 eps figures, REVTeX

    Worldline Monte Carlo for fermion models at large N_f

    Full text link
    Strongly-coupled fermionic systems can support a variety of low-energy phenomena, giving rise to collective condensation, symmetry breaking and a rich phase structure. We explore the potential of worldline Monte Carlo methods for analyzing the effective action of fermionic systems at large flavor number N_f, using the Gross-Neveu model as an example. Since the worldline Monte Carlo approach does not require a discretized spacetime, fermion doubling problems are absent, and chiral symmetry can manifestly be maintained. As a particular advantage, fluctuations in general inhomogeneous condensates can conveniently be dealt with analytically or numerically, while the renormalization can always be uniquely performed analytically. We also critically examine the limitations of a straightforward implementation of the algorithms, identifying potential convergence problems in the presence of fermionic zero modes as well as in the high-density region.Comment: 40 pages, 13 figure

    Dual energy method of material recognition in high energy introscopy systems

    No full text
    Element analysis based on so-called dual energy method is widely used throughout the world in X-ray customs inspection systems for luggage control in airports. It facilitates the routine work of customs officer on identification of illegal drugs and explosives hidden in luggage. Due to the absorption rate difference in material of X-rays generated by sources with different energies, discrimination of materials becomes possible. So the scanned image of inspected object can be represented in physical palette where materials are coloured according to their atomic number

    Search for Heavy Neutrino in K->mu nu_h(nu_h-> nu gamma) Decay at ISTRA+ Setup

    Full text link
    Heavy neutrino nu_h with m_h < 300MeV/c^2 can be effectively searched for in kaon decays. We put upper limits on mixing matrix element |U_mu_h}|^2 for radiatively decaying nu_h from K->mu nu_h (nu_h -> nu gamma) decay chain in the following parameter region: 30MeV/c^2 < m_h < 80MeV/c^2; 10^{-11}sec < tau_h < 10^{-9}sec. For the whole region |U_{mu h}|^2 < 5 x 10^{-5} for Majorana type of nu_h and | U_{\mu h}|^2 < 8 x 10^{-5} for the Dirac case.Comment: Published in Phys. Lett.

    Electron Spin Relaxation in a Semiconductor Quantum Well

    Full text link
    A fully microscopic theory of electron spin relaxation by the D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor quantum well with a magnetic field applied in the growth direction of the well. We derive the Bloch equations for an electron spin in the well and define microscopic expressions for the spin relaxation times. The dependencies of the electron spin relaxation rate on the lowest quantum well subband energy, magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review

    Extraction of Kaon Formfactors from K^- -> mu^- nu_mu gamma Decay at ISTRA+ Setup

    Get PDF
    The radiative decay K->mu nu gamma has been studied at ISTRA+ setup in a new kinematical region. About 22K events of K^- -> mu^- nu_mu gamma have been observed. The sign and value of Fv-Fa have been measured for the first time. The result is Fv-Fa=0.21(4)(4).Comment: 11 pages, 21 figures, submitted to Phys. Lett.

    Second order gauge invariant gravitational perturbations of a Kerr black hole

    Full text link
    We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism. Equations for the Weyl scalar ψ4,\psi_4, representing outgoing gravitational radiation, can be uncoupled into a single wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the existence of a first and second order gauge (coordinates) and tetrad invariant waveform, ψI\psi_I, by explicit construction. This waveform is formed by the second order piece of ψ4\psi_4 plus a term, quadratic in first order perturbations, chosen to make ψI\psi_I totally invariant and to have the appropriate behavior in an asymptotically flat gauge. ψI\psi_I fulfills a single wave equation of the form TψI=S,{\cal T}\psi_I=S, where T{\cal T} is the same wave operator as for first order perturbations and SS is a source term build up out of (known to this level) first order perturbations. We discuss the issues of imposition of initial data to this equation, computation of the energy and momentum radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.Comment: 19 pages, REVTEX. Some misprints corrected and changes to improve presentation. Version to appear in PR

    Search for light pseudoscalar sgoldstino in K- decays

    Get PDF
    A search for the light pseudoscalar sgoldstino production in the three body K- decay K-->pipi0P has been performed with the ISTRA+ detector exposed to the 25 GeV negative secondary beam of the U70 proton synchrotron. No signal is seen. An upper limit for the branching ratio Br(K->pipi0P), at 90% confidence level, is found to be around 9*10**-6 in the effective mass m(P) range from 0 till 200 MeV, excluding the region near m(pi0) where it degrades to 3.5*10**-5.Comment: 10 pages, LATEX, 8 EPS figures, revised version, to be published in Phys.Lett.
    corecore