7,295 research outputs found

    Unparticle Physics in the Moller Scattering

    Full text link
    We investigate the virtual effects of vector unparticles in the Moller scattering. We derive the analytic expression for scattering amplitudes with unpolarized beams. We obtain 95% confidence level limits on the unparticle couplings λV\lambda_{V} and λA\lambda_{A} with integrated luminosity of Lint=50,500fb−1L_{int}=50, 500 fb^{-1} and s=100,300\sqrt{s}=100, 300 and 500 GeV energies. We show that limits on λV\lambda_{V} are more sensitive than λA\lambda_{A}.Comment: 10 pages, 5 figures, 4 table

    Birefringence of interferential mirrors at normal incidence Experimental and computational study

    Full text link
    In this paper we present a review of the existing data on interferential mirror birefringence. We also report new measurements of two sets of mirrors that confirm that mirror phase retardation per reflection decreases when mirror reflectivity increases. We finally developed a computational code to calculate the expected phase retardation per reflection as a function of the total number of layers constituting the mirror. Different cases have been studied and we have compared computational results with the trend of the experimental data. Our study indicates that the origin of the mirror intrinsic birefringence can be ascribed to the reflecting layers close to the substrate.Comment: To be published in Applied Physics

    Analytical solutions for two heteronuclear atoms in a ring trap

    Full text link
    We consider two heteronuclear atoms interacting with a short-range δ\delta potential and confined in a ring trap. By taking the Bethe-ansatz-type wavefunction and considering the periodic boundary condition properly, we derive analytical solutions for the heteronuclear system. The eigen-energies represented in terms of quasi-momentums can then be determined by solving a set of coupled equations. We present a number of results, which display different features from the case of identical atoms. Our result can be reduced to the well-known Lieb-Liniger solution when two interacting atoms have the same masses.Comment: 6 pages, 6 figure

    Surface tension of the isotropic-nematic interface

    Full text link
    We present the first calculations of the pressure tensor profile in the vicinity of the planar interface between isotropic liquid and nematic liquid crystal, using Onsager's density functional theory and computer simulation. When the liquid crystal director is aligned parallel to the interface, the situation of lowest free energy, there is a large tension on the nematic side of the interface and a small compressive region on the isotropic side. By contrast, for perpendicular alignment, the tension is on the isotropic side. There is excellent agreement between theory and simulation both in the forms of the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev.

    Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development

    Get PDF
    Cadherins regulate the vertebrate nervous system development. We previously showed that cadherin-6 message (cdh6) was strongly expressed in the majority of the embryonic zebrafish cranial and lateral line ganglia during their development. Here, we present evidence that cdh6 has specific functions during cranial and lateral line ganglia and nerve development. We analyzed the consequences of cdh6 loss-of-function on cranial ganglion and nerve differentiation in zebrafish embryos. Embryos injected with zebrafish cdh6 specific antisense morpholino oligonucleotides (MOs, which suppress gene expression during development; cdh6 morphant embryos) displayed a specific phenotype, including (i) altered shape and reduced development of a subset of the cranial and lateral line ganglia (e.g., the statoacoustic ganglion and vagal ganglion) and (ii) cranial nerves were abnormally formed. These data illustrate an important role for cdh6 in the formation of cranial ganglia and their nerves

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    New Charged Dilaton Solutions in 2+1 Dimensions and Solutions with Cylindrical Symmetry in 3+1 Dimensions

    Full text link
    We report a new family of solutions to Einstein-Maxwell-dilaton gravity in 2+1 dimensions and Einstein-Maxwell gravity with cylindrical symmetry in 3+1 dimensions. A set of static charged solutions in 2+1 dimensions are obtained by a compactification of charged solutions in 3+1 dimensions with cylindrical symmetry. These solutions contain naked singularities for certain values of the parameters considered. New rotating charged solutions in 2+1 dimensions and 3+1 dimensions are generated treating the static charged solutions as seed metrics and performing SL(2;R)SL(2;R) transformations.Comment: Latex. No figure

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Hawking radiation of nonsingular black holes in two dimensions

    Get PDF
    In this letter we study the process of Hawking radiation of a black hole assuming the existence of a limiting physical curvature scale. The particular model is constructed using the Limiting Curvature Hypothesis (LCH) and in the context of two-dimensional dilaton gravity. The black hole solution exhibits properties of the standard Schwarzschild solution at large values of the radial coordinate. However, near the center, the black hole is nonsingular and the metric becomes that of de Sitter spacetime. The Hawking temperature is calculated using the method of complex paths. We find that such black holes radiate eternally and never completely evaporate. The final state is an eternally radiating relic, near the fundamental scale, which should make a viable dark matter candidate. We briefly comment on the black hole information loss problem and the production of such black holes in collider experiments.Comment: 8 pages, 4 figures; minor revisions; references added; version to appear in JHE
    • …
    corecore