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Abstract

Cadherins regulate the vertebrate nervous system development. We previously showed that 

cadherin-6 message (cdh6) was strongly expressed in the majority of the embryonic zebrafish 

cranial and lateral line ganglia during their development. Here, we present evidence that cdh6 has 

specific functions during cranial and lateral line ganglia and nerve development. We analyzed the 

consequences of cdh6 loss-of-function on cranial ganglion and nerve differentiation in zebrafish 

embryos. Embryos injected with zebrafish cdh6 specific antisense morpholino oligonucleotides 

(MOs, which suppress gene expression during development; cdh6 morphant embryos) displayed a 

specific phenotype, including (i) altered shape and reduced development of a subset of the cranial 

and lateral line ganglia (e.g. the statoacoustic ganglion and vagal ganglion) and (ii) cranial nerves 

were abnormally formed. This data illustrates an important role for cdh6 in the formation of 

cranial ganglia and their nerves.
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Introduction

Similar to other vertebrates, zebrafish cranial and lateral line ganglia derive from neural 

crest and epidermal placodes (Northcutt and Gans, 1983; Hall, 1999; Kelsh and Raible, 

2002). Anatomy and development of these ganglia in zebrafish are well-documented 

(Metcalfe, 1985; Raible and Kruse, 2000), but molecular mechanisms underlying their 

formation are still largely unknown. bHLH transcription factors NeuroD and neurogenin1 

(Ma et al., 1998; Kim et al., 2001; Andermann et al., 2002), the winged-helix transcription 

factor Foxd3 (Lopez-Schier et al., 2004), chemokine molecule Sdf-1 and its receptor Cxcr4b 

(Knaut et al., 2005; Haas and Gilmour, 2006) and cell adhesion molecules, including 
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cadherins (see below) are implicated in cranial ganglia and/or lateral line system 

developmental mechanisms.

Cadherins mediate cell adhesion mainly through homophilic interactions, and they play 

important roles in the development of a variety of tissues and organs (Takeichi, 1991; 

Gumbiner, 2005). More than 100 cadherin gene superfamily members are identified, and 

they are grouped into several major subfamilies including classic cadherins (type I and type 

II), protocadherins, desmogleins, desmocollins, cadherin related neuronal receptors, Fats, 

and seven-pass transmembrane cadherins (Nollet et al., 2000; Yagi and Takeichi, 2000). 

Cadherin-2 (also called N-cadherin, cdh2) and cadherin-4 (also called R-cadherin, cdh4), 

both classic type I cadherins, regulate development of the cranial ganglia and lateral line 

system in zebrafish (Kerstetter et al., 2004; Babb-Clendenon et al., 2006; Wilson et al., 

2007; Lamora and Voigt, 2009). In chicken, cdh2 regulates aggregation of placode-derived 

cranial sensory ganglia (Shiau and Bronner-Fraser, 2009). Cadherin-6, previously known as 

K-cadherin, a classic type II cadherin (Nollet et al., 2000), plays a role in renal development 

(Xiang et al., 1994; Cho et al., 1998; Mah et al., 2000;Paul et al., 2004; Kubota et al., 2007) 

and eye formation (Ruan et al., 2006; Liu et al., 2008a). Most of the cranial and lateral line 

ganglia express cdh6 during critical periods of their development in Xenopus (David and 

Wedlich, 2000) and zebrafish (Liu et al., 2006a), suggesting that this adhesion molecule 

regulates cranial ganglion and nerve development. We tested this idea by examining the 

consequences of cdh6 morpholino knockdown on cranial ganglion and nerve development. 

Our evidence supports the hypothesis that cdh6 participates in the formation of some, but 

not all cranial ganglia and their nerves. These findings suggest that other cadherins may 

have redundant functions that mask cdh6 loss-of-function consequences in those cells.

Methods and Materials

Zebrafish (Danio rerio) embryos were obtained by breeding adult zebrafish raised and 

maintained as described in the Zebrafish Book (Westerfield, 2005). All animal related 

procedures were approved by the University of Akron and Indiana University animal care 

and use committees. Embryos used for whole-mount immunocytochemistry or in situ 

hybridization were raised in PTU (1-phenyl-2-thiourea, 0.003%) to prevent melanization.

Zebrafish cdh6 morpholino oligonucleotides (cdh6MOs) were designed by and purchased 

from Gene Tools (Covalis, OR). Two translation blocking antisense MOs (cdh6MO1: 5’-

AAG AAG TAC AAT CCA AGT CCT CAT C-3’ (Kubota et al., 2007), cdh6MO2: 5’-TCC 

GCT CTT AGG GTG TCT TAC AGG G-3’ (Liu et al., 2008a), and a MO with five-

mismatched nucleotides (5-mis cdh6MO1: 5’-AAC AAG TAG AAT GCA ACT CCT GAT 

C-3’) were used in this study. The MOs, dissolved in Daneau buffer (58 mM NaCl, 0.7 mM 

KCl, 0.4 mM MgSo4, 0.6 mM Ca(NO3)2, and 5.0 mM HEPES pH 7.6), were microinjected 

into one- to four-cell stage embryos at 2–4 nl (6–12 ng for cdh6MO1 and 5-mis cdh6MO1, 

3.4–6.8 ng for cdh6MO2) per embryo. For cdh6 mRNA rescuing experiments, capped cdh6 

mRNA was synthesized from a pCS2+cdh6/eGFP vector (Kubota et al., 2007) using SP6 

mMessage mMachine kits (Ambion, Austin, TX). cdh6 mRNA (150 or 300 pg/embryo) was 

injected alone or with cdh6MO2 into one- to four-cell stage embryos as described above 

(Table 1).
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Injected embryos were placed in a 400 ml plastic beaker, half filled with a mixture of 

filtered fish tank water and embryonic medium 3 (1:1 volume), and allowed to develop at 

28.5°C until the embryos reached desired stages. Embryos for whole mount 

immunocytochemistry (ICC) or in situ hybridization were anesthetized in 0.02% MS-222 

and fixed in 4% paraformaldehyde overnight at 4°C. The next day, embryos were washed in 

1× phosphate buffered saline (PBS, pH 7.4), dehydrated in increasing concentrations of 

methanol and stored in 100% methanol at −20°C until use. Detailed procedure for whole 

mount ICC was described previously (Liu et al., 1999). Primary antibodies used were anti-

acetylated tubulin (Sigma, 1:1,000 and 1:4,000 for fluorescent and peroxidase ICC methods, 

respectively), anti-HuC/D (Molecular Probe, Eugene, OR, 1:1,000 and 1:3,000 for 

fluorescent and peroxidase ICC respectively), and zn5 (Zebrafish International Resource 

Center, University of Oregon, 1,500 and 1:2,000 for fluorescent and peroxidase ICC 

methods, respectively). FITC-labeled anti-mouse IgG or Texas Red-labeled anti mouse IgG 

(Jackson ImmunoResearch Laboratories, West Grove, PA, 1:100) were used as the 

secondary antibody for fluorescent ICC. A regular anti-mouse ABC kit (Vector 

Laboratories, Burlingame, CA) was used for the peroxidase method, and visualization of the 

reaction was achieved by using a DAB kit (Vector Laboratories).

Procedures for synthesis of digoxigenin-labeled cdh6 and NeuroD cRNA probes for in situ 

hybridization was described previously (Liu et al., 1999; Liu et al., 2006a). Detailed 

procedure for whole mount in situ hybridization was reported previously (Liu et al., 1999; 

Westerfield, 2005). Immunocytochemical detection of the digoxigenin-labeled probe was 

achieved by incubating embryos in an anti-digoxigenin Fab fragment antibody (conjugated 

to alkaline phosphatase) solution (Roche Molecular Biochemicals, Indianapolis, IN, 

1:5,000), followed by incubating the embryos in an NBT/BCIP solution (Roche).

Terminal dUTP nick-end labeling (TUNEL) was performed on whole-mount embryos at 24 

hpf, 35 hpf and 50 hpf using an in situ cell death detection kit (Roche), according to the 

manufacturer’s instructions.

For ICC, in situ hybridization and TUNEL experiments, control embryos (uninjected or 

embryos injected with the 5-misMO) and cdh6 morphants were processed at the same time, 

side by side. Fluorescent and bright field images were obtained using a SPOT digital camera 

mounted on an Olympus BX51 microscope. Sizes of structures were measured in area 

(square microns) using the SPOT software. Laser scanning confocal microscopy was 

performed using a Zeiss LSM 700 (Peabody, MA) using a 20× objective, and z-stacks of x-y 

images were collected through the region of interest. Image volumes were processed and 

statoacoustic ganglion volume measurements were performed using Volocity Software 

(Perkin Elmer, Inc., Walther MA). Statistical analysis was performed using two-tail 

unpaired Student t-test.
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Results

cdh6 mRNA is expressed in most of the cranial and lateral line ganglia of developing 
zebrafish

We previously showed that cdh6 mRNA (cdh6) was expressed in most of the cranial and 

lateral line ganglia of embryonic zebrafish (Liu et al., 2006a). As early as 16–17 hpf, cdh6 

was expressed in the anterior lateral line placode area (a, the precursor of the anterodorsal 

and anteroventral lateral line ganglia, Andermann et al., 2002), and the postotic placode (PP, 

Fig. 1A). At about 20 hpf, cells in the anterior portion of the PP become the posterior lateral 

line ganglion (gP), while cells in the posterior portion of the PP begin to separate from the 

gP, and migrate caudally to become the primordium of the posterior lateral line (pPLL, 

MetCalfe, 1985; Kimmel et al., 1995). At 20–21 hpf, both the anterior lateral line placode 

area and the gP contained high levels of cdh6 (Fig. 1B and C), but only a few cells in the 

newly formed pPLL expressed cdh6 (Fig. 1C). At 24 hpf, cdh6 was expressed in a subset of 

cells (mainly in cells in the peripheral region, not in the anterior and central regions) in the 

trigeminal ganglia (gV), in the newly formed statoacoustic ganglion (sag), in the gP, and the 

precursor of the medial lateral line and vagal ganglia (gM/X) (Fig. 1D; Liu et al., 2006a). 

Similar cdh6 expression pattern was seen in the gV, sag, gM/X and gP of older embryos, 

and the later formed anterodorsal and anteroventral lateral line ganglia (gAd and gAv, 

respectively) also expressed cdh6 (Fig. 1E and F; Liu et al., 2006a). After 21 hpf, no cdh6 

expression was detected in the migrating pPLL and neuromasts.

Blocking Cdh6 function affects formation of a subset of cranial ganglia

The specificity of the 2 translation blocking zebrafish cdh6 MOs was previously 

characterized, showing reduced cadherin-6 protein (Cdh6) expression and cdh6 mRNA 

rescue of morphant phenotype (Kubota et al., 2007; Liu et al., 2008a). Injection of either of 

cdh6MO1 or cdh6MO2 produced embryos with similar body and yolk size as uninjected 

control embryos (Fig. 2), with the morphants having gross morphological defects such as 

smaller eye, edema in the thorax, short yolk extension, and/or curved body (Fig. 2D and G; 

more obvious in embryos younger than 48 hpf, Fig. 2C, possibly due to disrupted kidney 

function, Kubota et al., 2007). In contrast, injection of the control MO (5-mismatched) 

resulted in embryos that were indistinguishable from uninjected control embryos. Effects of 

these cdh6MOs on the embryonic gross morphological defects were summarized in Table 1, 

which were similar to results from our previous study (Liu et al., 2008a). Embryos with 

severe gross morphological defects had much reduced head and eyes, curved and obviously 

smaller body, large thoracic edema, and large yolk. Embryos with moderate defects showed 

smaller eyes, moderate thoracic edema, straight or slightly curved body, with similar or 

slightly larger yolk compared to uninjected control embryos (Fig. 2). Mildly affected 

embryos looked similar to uninjected control embryos, except having obvious shortened 

yolk extensions. Most of these embryos also had slightly smaller eyes and enlarged thoracic 

edema upon careful examination. To make analysis and interpretation of results more 

consistent, differentiation of the cranial ganglia and lateral line system was examined in 

moderately affected embryos injected with cdh6MO2 (Liu et al., 2008a).
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To further confirm the cdh6MO2 specificity, we performed cdh6 mRNA rescuing 

experiments. Co-injection of the synthetic cdh6 mRNA (150 pg/embryo) with cdh6MO2 

(3.4 ng/embryo) resulted in most embryos (48–50 hpf) with either mild gross morphological 

defects or wild type appearance (30.0%; Table 1). Increasing cdh6 mRNA dosage (300 pg + 

3.4 ng cdh6MO2/embryo) increased the percentage of rescued embryos (55.1% wild type 

appearance; Fig. 2H, Table 1). Note that embryos injected with cdh6 mRNA alone (300 ng/

embryo; Fig. 2F) were indistinguishable from uninjected control embryos (Fig. 2E, Table 1).

Differentiation of the cranial and lateral line ganglia was analyzed using anti-HuC/D at 32 

and 50 hpf. This antibody strongly labels cell bodies in the trigeminal ganglion (gV), 

anterodorsal lateral line ganglion (gAd), statoacoustic ganglion (sag) and posterior lateral 

line ganglion from 24 to 72 hpf zebrafish embryos (Raible and Kruse, 2000). It also labels 

the anteroventral lateral line ganglion (gAv, 36 hpf to 72 hpf) and vagal ganglion (gX, 45 

hpf to 72 hpf). The staining intensity of the ganglia was similar between the control embryos 

and cdh6 morphants, but organization, size and/or shape of several ganglia were different 

between these embryos (Fig. 3). At 32 hpf, the gV of control embryos was a compact and 

triangularly shaped structure (Fig. 3A; Raible and Kruse, 2000), whereas in most morphants 

the gV was irregularly shaped and fragmented (Fig. 3F, Table 2), although there was no 

significant difference in their size (Fig. 3K). The gAd in control embryos was oval shaped 

(Fig. 3A, Raible and Kruse, 2000), while most of the cdh6 morphant gAd was elongated, 

and slightly smaller than control embryos (Fig. 3F). The staining intensity was different 

between the anterior half (stronger) and posterior half (weaker) of the sag in both the control 

(Fig. 3A) and morphant embryos (Fig. 3F), and the ganglion had similar shape (a large 

anterior that tapers off in the posterior) in these embryos. But the morphant sag was 

significantly smaller than the control sag. There was no consistent difference in the size and 

shape of the gP between the control embryos and morphants (Fig. 3A & F): there was no 

significant difference in gP size at 32 hpf, while the morphant gP was slightly (statistically 

significant) larger than control gP at 50 hpf. Similar results for the sag and gAd were 

obtained using NeuroD and zn5 immunostaining. At 32 hpf, a NeuroD expressing area is 

located anteromedial to the otic vesicle, which includes the gAv, facial ganglion and sag 

(Andermann et al., 2002). This area in control embryos was significantly larger than that in 

cdh6 morphants, although it had similar shape and staining intensity (Fig. 4). Compared to 

the gAd in control embryos (Fig. 4A), the morphant gAd was more elongated and its 

staining was weaker. The gP and precursors of the gX are also NeuroD positive (Andermann 

et al., 2002) (gX precursors are not labeled with anti-HuC/D staining), and they were also 

smaller and stained weaker in the morphants (Fig. 4). Zn5 labels both soma and processes of 

a subset of neurons in the gV, gAd and sag (Liu et al., 2008b). Similar to the above results, 

zn5 labeled morphant sag appeared smaller than control sag (Fig. 5). But unlike the results 

from the anti-HuC/D staining, the zn5 labeled gV area was smaller in most morphants at 32 

hpf (Fig. 5A & E, Table 2). The difference may at least partially due to disrupted gV 

differentiation (e.g. affected neuronal processes formation) in the morphants, and/or 

difference in proteins recognized by these two antibodies.

By 50 hpf, the gV and gAd partially fuse (Higashijima et al., 2000; Raible and Kruse, 2000). 

Like the younger cdh6 morphants, the gV was disorganized and fragmented (Fig. 3D) 
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compared to that of control embryos (Fig. 3B) or embryos injected with the 5-mismatched 

MO (Fig. 3C). Again, no significant difference in gV/Ad size was detected (Fig. 3L). Like 

the younger cdh6 morphants, the sag (Fig. 3I), although similar in shape and staining to that 

of control embryos (Fig. 3G), was significantly smaller than control sag (Fig. 3L). To ensure 

that ganglia area measurements are consistent with changes in three-dimensional ganglia 

volumes, we measured sag volume in 50 hpf embryos using laser scanning confocal 

microscopy and Volocity image analysis software (Perkin Elmer). Whole mount anti-HuC/D 

immunofluorescence staining was used to measure average sag volume. Control sag volume 

(46,412 cubic microns, SD=5,220, n=5) was significantly larger than that in cdh6 morphant 

embryos (29,425 cubic microns, SD=4,252, n=7; P>0.0001), similar to the area 

measurements. At 50 hpf, the gX has become a distinct large ganglion situated ventral to the 

gP (Fig. 3B), but the morphant gX (Fig. 3D) was only about half the size as that of the 

control embryos (Fig. 3L). Similar to the younger embryos, the gP at 50 hpf showed similar 

staining in control (Fig. 3B) and morphant embryos (Fig. 3D), and the gP was slightly larger 

in the morphant embryos (Fig. 3L). These results were complimentary with results obtained 

using zn5 immunostaining (Fig. 5). At 50 hpf, the zn5 stained sag were triangularly shaped 

in both control (Fig. 5F) and morphant embryos (Fig. 5G), but the morphant sag was 

obviously smaller. The labeling of the morphant gX (Fig. 5C) was apparently weaker 

compared to that of control embryos (Fig. 5B).

To test whether morphant embryos were delayed in overall development, we measured the 

otic vesicle size, which becomes larger as development proceeds (Haddon and Lewis, 1996), 

and we found that the morphant embryo inner ear size was similar in to that of control 

embryos (Fig. 3L).

Cranial and lateral line ganglia defects in cdh6 morphants were rescued by cdh6 mRNA 
injection

Co-injection of the synthetic cdh6 mRNA with cdh6MO2 resulted in most embryos with 

wildtype gross morphology or with gross morphological defects that were less severe than 

embryos injected with only cdh6MO2 (see above, Table 2). To determine whether or not 

rescue of gross morphology was accompanied with cranial and lateral line ganglia 

phenotype rescue, we compared control, morphant and rescue embryos using anti-HuC/D 

and zn5 antibody staining (Figs. 3 & 5). Embryos with wild type gross morphology also had 

anti-HuC/D (Fig. 3E & J) zn5 (Fig. 5D & H) staining patterns that were indistinguishable 

from those of control embryos (Figs. 3B & G, 5B & F; Table 2). Moreover, measurements 

of anti-HuC/D-labeled cranial and lateral line ganglia of the rescued embryos showed that 

they were similar in size to the control values in all the labeled ganglia (Fig. 3L). Therefore, 

ganglia development was rescued, like gross morphological features in embryos co-injected 

with cdh6MO2 and cdh6 mRNA. These data indicate that the cdh6 morphant phenotype is 

specific, that is, cranial ganglia defects are due to cdh6 loss-of-function.

Analysis of apoptosis cdh6 morphants

To determine whether the smaller sag and vagal ganglion in cdh6 morphants was mainly due 

to increased cell death, we performed TUNEL staining (Fig. 6). At 24 hpf, control and cdh6 

morphant embryos showed no statistical difference in TUNEL-positive nuclei (n=10 each in 
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control and morphant groups; Fig. 6A,D). Of 10 cdh6 morphants examined at 35 hpf, only 

three apoptotic cells (all in one embryo) were detected in the otic vesicle and surrounding 

hindbrain area (Fig. 6E). Similar results were observed in older (50 hpf) cdh6 morphants (10 

embryos examined in the otic vesicle and surrounding area, 2 apoptotic cells, both in one 

embryo; Fig. 6F). These results were similar to uninjected control embryos (Fig. 6B and D; 

10 embryos examined for each stage). For both control and morphant embryos, there were 

numerous apoptotic cells in the fore- and midbrain (Fig. 6G and I) and trunk and tail regions 

of these embryos (Fig. 6H and J).

cdh6 function in cranial and lateral line nerves development

Defects in cdh6 morphant cranial and lateral line ganglia suggest that development of their 

nerves may also be affected. Formation of these nerves was analyzed using anti-acetylated 

tubulin immunostaining (Raible and Kruse, 2000). At 50 hpf, in both control embryos and 

embryos injected with the 5-mismatched MO, several distinct nerves were observed 

originating from the gV/Ad, projecting anterodorsally (e.g. the anterodorsal lateral line 

nerve (nADso) and the dorsolateral nerve of the trigeminal ganglion (nVDl, Fig. 7A & B; 

Raible and Kruse, 2000), or anteroventrally (e.g. the buccal ramus of the anterodorsal lateral 

line nerve (nADb) and the mandibular ramus of the anteroventral lateral line nerve (nAVm, 

Fig. 7A & B). These nerves were also present in most cdh6 morphants (Fig. 7C), and the 

nADb appeared to be similar as in the control embryos. However, the other nerves were 

different: the nADso and nVDl were more convoluted and displayed varicosities, a beaded 

appearance, while the nAVm was shorter and less fasciculated. The vagal nerve (nX) in 

control embryos or embryos injected with the 5-mismatched MO was conspicuous with a 

central projecting vagal root (rX) and four peripheral branches (Fig. 5A & B; Table 3; 

Raible and Kruse, 2000). In the cdh6 morphants, the rX was thinner, and the nX contained 

only two branches (the most anterior and posterior branches), and the nX stem (before the 

nerve branches) was defasciculated (Fig. 5C). The posterior lateral line nerve (which 

originates from the gP and is located lateral to the horizontal myoseptum) is a straight nerve 

extending from the gP to the tail in control embryos at 50 hpf (Fig. 8). The morphant nP had 

similar appearance as that in the control embryos, except that it appeared to be a little 

thinner in most of the morphants (14/18), but it reached the tail region in most (15/18) 

morphants examined (Fig. 8; Table 3). Confocal microscopy was performed to ensure that 

changes observed in wide field microscopy were not merely due to lack of sensitivity, and 

these experiments confirmed the cdh6 loss-of-function phenotypes, particularly the gV/Ad 

disorganization and nX branching (Fig. 7D–G).

Discussion

There is extensive information on cadherins function in development of the vertebrate 

central nervous system. Cadherins are involved in numerous events during the vertebrate 

brain development, including formation and maintenance of the neuroepithelium, 

differentiation and migration of neurons, neurite initiation, outgrowth, pathfinding, 

fasciculation, synapse formation and stabilization (Hirano et al., 2003; Suzuki and Takeichi, 

2008). Only a few studies focused on cadherins roles in the development of the vertebrate 

cranial ganglia or lateral line system. We previously showed that cadherin-2 (Cdh2) and 
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cadherin-4 (Cdh4) play distinct roles in differentiation of these structures (Kerstetter et al., 

2004; Wilson et al., 2007). More recently, Lamora and Voigt (2009) discovered that Cdh2 

functions cell autonomously in guiding afferent fibers to their targets in zebrafish cranial 

sensory ganglia (e.g. facial ganglion and gX), and Shiau and Bronner-Fraser (2009) 

demonstrated that Cdh2 works in concert with Slit1-Robo2 signaling in regulating formation 

of placode-derived cranial sensory ganglia (e.g. gV).

The cdh6 loss-of-function phenotype in this study correlates well with cdh6 expression data 

(Fig. 1; Liu et al., 2006a). Reducing Cdh6 function using the morpholino technique 

produced distinct defects in most cranial and lateral line ganglia that express cdh6. The 

ganglia with strong cdh6 expression (e.g. sag and gX) exhibited significant reduction in size. 

There was no detectable difference in the gV size between the control and morphant 

embryos, with this ganglia expressing cdh6 only in a subset of cells located in peripheral 

regions. It is possible that these cdh6 expression cells in the gV participate in assembly of 

this ganglion, because the morphant gV was disorganized and fragmented. It is interesting 

that no obvious defect is found in the morphant gP and only a small defect in the nP 

(thinner), although the gP contains high levels of cdh6 throughout embryonic development. 

This may be due to compensatory function of other cadherins expressed in the gP, including, 

cdh2, cdh4 and cdh10 (Liu et al., 2001; 2003; 2006a).

Cdh6 is likely to function in a direct and specific mechanism during cranial ganglia and 

nerve formation. Supporting this idea, cdh6 expression in the central nervous system of 1–2 

day old zebrafish embryos is restricted to patches in the dorsal and ventral forebrain, and 

dorsal hindbrain (Liu et al., 2006a). Importantly, cdh6 expression in the hindbrain is 

confined to superficial regions of the cerebellum and medulla (Fig. 1A–E; Liu et al., 2006a), 

and application of zebrafish cdh6 mRNA to cdh6 MO injected embryos resulted in partial to 

complete rescue of the cranial and lateral line ganglia defects. Moreover, our data supports 

the idea that cranial and lateral line ganglia defects in cdh6 morphant embryos are not due to 

a general delay in embryonic development: (i) morphant embryos had similar body and yolk 

sizes as control embryos; (ii) morphant embryos had similar otic vesicle size as control 

embryos; (iii) in morphant embryos, the nP reached the tail region around 48 hpf, like that of 

wild type zebrafish embryos (Metcalfe, 1985).

The cdh6 loss-of-function phenotype is distinct from the cdh2 loss-of-function phenotype 

(cdh2 mutant glo or morphants, Kerstetter et al., 2004) or the cdh4 phenotype (cdh4 

morphants, Wilson et al., 2007). cdh2 is widely expressed in both the central and peripheral 

nervous structures in embryonic zebrafish (Bitzur et al., 1994; Liu et al., 2003). Functional 

analysis showed that cdh2 participates in cranial ganglia and lateral line system 

development, but the cdh2 morphants and glo mutant phenotypes are more severe including: 

(i) more severe fragmentation of the gV/Ad; (ii) little or no dorsal nerve branches from the 

gV/Ad; (iii) altered shape, and greatly reduced sag; and (iiii) the gX nerves and nerve root 

were barely visible (Kerstetter et al., 2004). Although the posterior lateral line nerve (nP) 

was present in cdh2 morphants or glo mutants, the nerve had greatly altered trajectories 

(curved or turned around).
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cdh4 was also detected in both the central and peripheral nervous structures of the 

embryonic zebrafish (Liu et al., 2001; 2003). cdh4 expression in the cranial and lateral line 

ganglia is more restricted (e.g. after 30 hpf). It is not surprising that no obvious defects in 

these ganglia are found in 30 hpf cdh4 morphant embryos (Wilson et al., 2007). At 50 hpf, 

several defects become evident in the ganglia and their nerves. The gV/Ad dorsal nerve 

branches are present, but thinner than control embryos (but lacking the varicosities seen in 

cdh6 morphant gV/Ad dorsal nerve branches). The nADb, one of the ventral branches was 

also much thinner in cdh4 morphants than control embryos (no obvious defects in this nerve 

in cdh6 morphants). The reduced sag size and altered shape in cdh4 morphant embryos are 

more severe than those of cdh6 morphant embryos which are mainly reduced in size. 

Moreover, cdh4 morphants have severely reduced nP length (reaches only ½ to 2/3 of the 

body length). In constrast, cdh6 loss-of-function had little effect on nP length.

Despite the strong cdh6 expression in most of the cranial and lateral line ganglia during 

critical stages of their development, defects in these structures of cdh6 morphants are 

generally less severe than those of embryos with cdh2 or cdh4 loss-of-function (see above). 

This may partially be explained by compensatory function of other cadherins in these 

ganglia, such as cdh2, cdh4 and cdh10 (Liu et al., 2003; 2006b). Moreover, both cdh2 and 

cdh4 are widely expressed in the hindbrain of embryonic zebrafish. Therefore, defects in the 

cranial and lateral line ganglia and nerves in embryos lacking these cadherins’ functions 

may display secondary defects due to hindbrain malformation (Lele et al., 2002; Hong and 

Brewster, 2006), which subsequently affects the cranial and lateral line ganglia 

differentiation. Because there is no increase in the number of apoptotic cells in the cranial 

and lateral line ganglia of 24, 32 and 50 hpf cdh6 morphants, the reduced sizes in the sag 

and gX of cdh6 morphants may due to decreased cell proliferation, similar to previous 

findings in the retina of zebrafish cdh6 morphants (Liu et al., 2008a) and Xenopus cdh6 loss-

of-function embryos (Ruan et al., 2006). It is unclear how Cdh6 controls differentiation of 

the zebrafish cranial and lateral line structures. Like other classic cadherins, Cdh6 may 

mediate homotypic adhesion (via recognition and binding its N-terminus) that is necessary 

for cranial ganglia aggregation and differentiation, and cadherin adhesion may regulate 

extension and fasciculation of cranial nerves. Cdh6 may also regulate development and 

differentiation by regulating intracellular signaling mechanisms via cytoplasmic domain 

interacting with proteins like β–catenin, tyrosine kinases, and Rho-family GTPases 

(Wheelock and Johnson, 2003; Bruses, 2006). Understanding molecular mechanisms 

underlying cdh6 function in the development of the cranial ganglia and lateral line system 

will be the focus future study.
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Figure 1. 
cdh6 expression in the cranial and lateral line ganglia of embryonic zebrafish. All panels 

show lateral views of the hindbrain region of whole mount embryos (anterior to the left and 

dorsal up) processed for in situ hybridization using a cdh6 cRNA probe. Panel C is a higher 

magnification of the post otic area showing the newly formed primordium of the post lateral 

line (pPLL, dashed line indicating the boundary of its posterior 2/3). The arrow points to one 

of a few cdh6 expressing cells in the pPLL. Other abbreviations: a, anterior lateral line 

placode area; c, cerebellum; gAd, anterodoral lateral line ganglion; gAv, anteroventral 

lateral line ganglion; gM/X, medial lateral line and vagal ganglia; gP; posterior lateral line 

ganglion; gV, trigeminal ganglion; h, hindbrain; op, otic placode; ov, otic vesicle (indicated 

by the dashed line); PP, postotic placode; sag, statoacoustic ganglion. Scale bar = 50 µm.
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Figure 2. 
Overall cdh6 loss-of-function phenotype. Lateral views (anterior to the left and dorsal up) of 

whole mount embryos processed for anti-HuC/D immunoperoxidase staining. The 

morphants (panels C and D, injected with cdh6MO2 showing moderate phenotype) were 

similar in body and yolk size as uninjected control embryos (panels A and B), but had 

smaller head and eyes, curved body at younger (e.g. 32 hpf) stages, shortened yolk extension 

and edema in the thorax, as shown in our previous publication (Liu et al., 2008a). Panels E-

H show live embryos raised in PTU treated fish water. The eyes are indicated by asterisks, 
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edema in the thorax is indicated by an arrowhead, and the end of the yolk extension is 

indicated by an arrow. Scale bar = 250 µm for all panels.
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Figure 3. 
Development of the cranial and lateral line ganglia requires Cdh6 function. Panels A–J show 

anti-HuC/D immunoperoxidase staining of embryos, showing lateral views (anterior to the 

left and dorsal up) of the head region. Panels K and L show histograms representing the 

area/size (square microns; n=13 for all measured ganglia) of anti-HuC/D labeled cranial and 

lateral line ganglia, comparing control embryos (gray bars), cdh6 morphants (dark bars) and 

cdh6 mRNA rescued embryos (bars with diagonal lines). One asterisk indicates significant 

difference (p=0.0013), while three asterisks indicate highly significant difference (p<0.001). 

Abbreviations: gX, vagal ganglion; ot, optic tectum. Other abbreviations are the same as in 

Figure 1. Panels A and F have the same magnification (scale bar = 100 µm), while the 

remaining panels have the same magnification (scale bar = 50 µm).
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Figure 4. 
Cdh6 function is required for differentiation of NeuroD positive cranial and lateral line 

ganglia. Panels A and B show lateral views (anterior to the left and dorsal up) of the 

hindbrain region of whole mount embryos processed for in situ hybridization using the 

neuroD cRNA probe. Panel C show comparisons in area size of two neuroD labeled areas 

between control (gray bars) and cdh6 morphants (dark bars). Abbreviations: gComp, 

complex “ganglion” including the facial ganglion, anteroventral lateral line ganglion and 

statoacoustic ganglion; gM, middle lateral line ganglion; gP/X, posterior lateral line 

ganglion and precursors of vagal ganglion. Other abbreviations are the same as Figure 1. 

Scale bar = 50 µm.
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Figure 5. 
Cdh6 function is required for differentiation of zn-5 positive cranial and lateral line ganglia. 

All panels are lateral views (anterior to the left and dorsal up) of the head region of whole 

mount embryos. Abbreviations are the same as in Figure 1. All images have the same 

magnification. Scale bar = 50 µm.
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Figure 6. 
Apoptosis analysis using TUNEL staining. All panels show lateral views of whole mount 

embryos (anterior to the left and dorsal up) processed for TUNEL staining. Panels A-F and 

G and I show the mid- and hindbrain region focusing on the otic vesicle, while panels H and 

J are from the body trunk region. Arrowheads point to some TUNEL positive cells. 

Abbreviation: nc, notochord; tm, trunk muscles. Other abbreviations are the same as in 

Figure 1. Scale bar = 50 µm for all panels.
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Figure 7. 
cdh6 loss-of-function defects in cranial and lateral line nerves, demonstrated by anti-

acetylated tubulin immunofluorescent staining, in a control embryo (panel A), an embryo 

injected with the 5-mismatched MO (panel B), and a cdh6 morphant (panel C). The images 

are lateral views (anterior to the left and dorsal up) of the head region of the whole mount 

embryos. Laser scanning confocal microscopy image projections confirmed results using 

wide field microscopy: anterior cranial nerves (panels D and F) and posterior cranial nerves 

(panels E and G) in control (panels D and E) and cdh6 morphant (panels F and G) embryos. 

Arrowheads in panel F point to two of the cell clusters of the fragmented gV/Ad. The 

morphant vagus root (rX, panel G) was difficult to discern because it is situated above anti-

acetylated tubulin positive brain cells and fiber tracks. Other abbreviations: nADb, buccal 

ramus of the anterodorsal lateral line nerve; nADso, superior ophthalmic ramus of the 

anterodorsal lateral line nerve; nAVm, mandibular ramus of the anteroventral lateral line 

nerve; nVDl, dorsolateral nerve of the trigeminal ganglion; nP, posterior lateral line nerve; 

nX, vagus nerves; ov, otic vesicle. All images have the same magnification.
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Figure 8. 
Normal development of the posterior lateral line nerve in cdh6 morphants. All panels show 

lateral views of whole mount embryos (anterior to the left and dorsal up) processed for anti-

acetylated tubuline immunoperoxidase staining. Arrows point to the posterior lateral line 

nerve, while the asterisk indicates the terminus of the nerve. Panels C and D are higher 

magnifications (same magnification) of the tail region of the embryos in panels A and B 

(same magnification), respectively. Scale bar = 200 µm for panels A and B, 100 µm for 

panels C and D.
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Table 1

Effects of cdh6MO Injection on Zebrafish Development

# embryos
with slight
gross defects (%)

# embryos
with moderate
gross defects (%)

# embryos
with severe
gross defects (%)

# embryos examined
at 48–50 hpf (# embryos
with no phenotype)

Uninjected Control 10 (3.6%) 7 (2.5%) 9 (3.2%) 281 (255)

cdh6MO1 (6.0 ng) 27 (20.6%) 86 (65.6%) 12 (9.2%) 131 (6)

cdh6MO2 (3.4 ng) 57 (13.2%) 316 (73.1%) 37 (8.6%) 432 (22)

5-misMO (6.0 ng) 4 (2.7%) 5 (3.3%)* 2 (1.3%) * 149 (138)

cdh6MO2 (3.4 ng) and cdh6 mRNA (150 pg) 32 (53.3%) 10 (16.7%) 0 (0%) 60 (18)

cdh6MO2 (3.4 ng) and cdh6 mRNA (300 pg) 28 (35.9%) 5 (6.4%) 2* (2.6%) 78 (43)

cdh6 mRNA (300 pg) 4 (7.1%) 0 (0%) 0 (0%) 56 (52)

*
The gross morphological defects in these embryos (e.g. little dorsal structures or truncated bodies) were different from the cdh6morphant
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Table 2

Effects of cdh6MO Injection on Cranial and Lateral Line Ganglia Development

gV/Ad (%) sag (%) gX (%) gP (%)

32 hpf anti-Hu

Control (n=30) 3.3 6.7 0

cdh6MO (n=30) 83.3 83.3 20

32 hpf zn5

Control (n=30) 13.3 10

cdh6MO (n=30) 83.3 80

50 hpf anti-Hu

Control (n=30) 10 6.7 16.7 3.3

5-misMO (n=24) 4.2 12.5 8.3 8.3

cdh6MO (n=30) 56.7 66.7 93.3 20

cdh6MO+mRNA (n=12) 0 16.7 8.3 0

50 hpf zn5

Control (n=30) 0 13.3 6.7

5-misMO (n=30) 10 16.7 10

cdh6MO (n=28) 50 71.4 85.7

cdh6MO+mRNA (n=1) 0 25.0 8.3

n, number of ganglia examined. %, percentages of obviously abnormally formed ganglia (e.g. smaller size, altered shape, and/or reduced staining 
compared to the majority of control embryos).
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Table 3

Effects of cdh6MO Injection on Cranial and Lateral Line Nerves Development

Anti-acetylated tubulin gV/Ad nerves (%) gX nerves (%) nP (%)

Uninjected Control (n=18) 5.6 0 0

cdh6MO (n=18) 100 100 77.8*

5-misMO (n=16) 6.3 6.3 6.3

n, number of embryos examined.

*
the morphant nP had similar appearance as control nP, and reached the tail region in most morphants, but most of the morphant nP (14/18) was 

thinner than control nP.
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