2,170 research outputs found

    Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    Get PDF
    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described

    Discovery From Non-Parties (Third-Party Discovery) in International Arbitration

    Get PDF
    International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA

    Detention Properties of Subsurface Stormwater Modules Under Tropical Climate

    Get PDF
    Subsurface stormwater module is one of the components of a sustainable drainage system. However, the performance of subsurface stormwater module as on-site detention under tropical climate like Malaysia has not been extensively studied in the literature. The current study involves on-site installation of pilot scale subsurface stormwater modules exposed to tropical climate to simulate real conditions to evaluate the detention performance. Rainfall together with the changes in water level and volume of water detained in the installation were observed for six months between April 2021 to October 2021. The subsurface stormwater module used in the current study has a porosity of 94%. It was found that the subsurface stormwater module setup was able to detain between 35.2% to 95.6% of the rainfall volume generated from total rainfall between 11.1 mm to 56.8 mm. The findings can be used as design consideration for using subsurface stormwater module under tropical climate

    Detention Properties of Subsurface Stormwater Modules Under Tropical Climate

    Get PDF
    Subsurface stormwater module is one of the components of a sustainable drainage system. However, the performance of subsurface stormwater module as on-site detention under tropical climate like Malaysia has not been extensively studied in the literature. The current study involves on-site installation of pilot scale subsurface stormwater modules exposed to tropical climate to simulate real conditions to evaluate the detention performance. Rainfall together with the changes in water level and volume of water detained in the installation were observed for six months between April 2021 to October 2021. The subsurface stormwater module used in the current study has a porosity of 94%. It was found that the subsurface stormwater module setup was able to detain between 35.2% to 95.6% of the rainfall volume generated from total rainfall between 11.1 mm to 56.8 mm. The findings can be used as design consideration for using subsurface stormwater module under tropical climate

    Intensity and Doppler velocity oscillations in pore atmospheres

    Get PDF
    We have investigated chromospheric traveling features running across two merged pores from their centers at speeds of about 55 km s−1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high-time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope. We infer a line-of-sight (LOS) velocity by applying the lambdameter method to the Ca ii 8542 Å band and Hα band, and investigate intensity and LOS velocity changes at different wavelengths and different positions at the pores. We find that they have three-minute oscillations, and the intensity oscillation from the line center (0.0 A\overset{\circ}{\rm A} ) is preceded by that from the core (−0.3 A\overset{\circ}{\rm A} ) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from the near core spectra (Δλ=0.100.21  A{\Delta }\lambda =0.10-0.21\;\overset{\circ}{\rm A} ) is greater than that from the far core spectra (Δλ=0.240.36  A{\Delta }\lambda =0.24-0.36\;\overset{\circ}{\rm A} ). These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy structure. We conclude that the observed wave properties of the pores are quite similar to those from the sunspot observations

    Period Integrals of CY and General Type Complete Intersections

    Full text link
    We develop a global Poincar\'e residue formula to study period integrals of families of complex manifolds. For any compact complex manifold XX equipped with a linear system VV^* of generically smooth CY hypersurfaces, the formula expresses period integrals in terms of a canonical global meromorphic top form on XX. Two important ingredients of our construction are the notion of a CY principal bundle, and a classification of such rank one bundles. We also generalize our construction to CY and general type complete intersections. When XX is an algebraic manifold having a sufficiently large automorphism group GG and VV^* is a linear representation of GG, we construct a holonomic D-module that governs the period integrals. The construction is based in part on the theory of tautological systems we have developed in the paper \cite{LSY1}, joint with R. Song. The approach allows us to explicitly describe a Picard-Fuchs type system for complete intersection varieties of general types, as well as CY, in any Fano variety, and in a homogeneous space in particular. In addition, the approach provides a new perspective of old examples such as CY complete intersections in a toric variety or partial flag variety.Comment: An erratum is included to correct Theorem 3.12 (Uniqueness of CY structure
    corecore