4,943 research outputs found

    The QCD equation of state at finite T/\mu on the lattice

    Full text link
    We present N_t=4 lattice results for the equation of state of 2+1 flavour staggered, dynamical QCD at finite temperature and chemical potential. We use the overlap improving multi-parameter reweighting technique to extend the equation of state for non-vanishing chemical potentials. The results are obtained along the line of constant physics. Our physical parameters extend in temperature and baryon chemical potential upto \approx 500-600 MeV.Comment: 13 pages 9 figures, talk given at Finite Density QCD at Nara, Nara, Japan, 10-12 July 200

    Lattice QCD at non-vanishing density: phase diagram, equation of state

    Full text link
    We propose a method to study lattice QCD at non-vanishing temperature (T) and chemical potential (\mu). We use n_f=2+1 dynamical staggered quarks with semi-realistic masses on L_t=4 lattices. The critical endpoint (E) of QCD on the Re(\mu)-T plane is located. We calculate the pressure (p), the energy density (\epsilon) and the baryon density (n_B) of QCD at non-vanishing T and \mu.Comment: Contributed to Workshop on Strong and Electroweak Matter (SEWM 2002), Heidelberg, Germany, 2-5 Oct 200

    VLBI imaging of extremely high redshift quasars at 5 GHz

    Get PDF
    We present very long baseline interferometry (VLBI) images of ten very high redshift (z>3) quasars at 5 GHz. The sources 0004+139, 0830+101, 0906+041, 0938+119 and 1500+045 were observed in September 1992 using a global VLBI array, while 0046+063, 0243+181, 1338+381, 1428+423 and 1557+032 were observed in October 1996 with the European VLBI Network and Hartebeesthoek, South Africa. Most of the sources are resolved and show asymmetric structure. The sample includes 1428+423, the most distant radio loud quasar known to date (z=4.72). It is barely resolved with an angular resolution of about 2.0*1.4 mas.Comment: Astronomy and Astrophysics, in press, Latex2e, 10 pages, 3 figures (and lots of sub-figures

    Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles

    Get PDF
    We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the electron, muon and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the effects of uu, dd, ss and cc quarks and are performed directly at the physical values of the quark masses and in volumes of linear extent larger than 6fm6\,\mathrm{fm}. All connected and disconnected Wick contractions are calculated. Continuum limits are carried out using six lattice spacings. We obtain aeLOHVP=189.3(2.6)(5.6)×1014a_e^\mathrm{LO-HVP}=189.3(2.6)(5.6)\times 10^{-14}, aμLOHVP=711.1(7.5)(17.4)×1010a_\mu^\mathrm{LO-HVP}=711.1(7.5)(17.4)\times 10^{-10} and aτLOHVP=341.0(0.8)(3.2)×108a_\tau^\mathrm{LO-HVP}=341.0(0.8)(3.2)\times 10^{-8}, where the first error is statistical and the second is systematic.Comment: 17 pages, 8 figures (in 13 PDF files), RevTeX 4.1. Minor changes to results and to text. References updated. Matches version published in Physical Review Letter

    VSOP observation of the quasar PKS 2215+020: a new laboratory for core-jet physics at z=3.572

    Get PDF
    We report results of a VSOP (VLBI Space Observatory Programme) observation of a high redshift quasar PKS 2215+020 (z=3.572). The ~1 milliarcsecond resolution image of the quasar reveals a prominent `core-jet' structure on linear scales from 5/h to 300/h pc ($H_0=100*h km/(s*Mpc). The brightness temperatures and sizes of bright features identified in the jet are consistent with emission from relativistic shocks dominated by adiabatic energy losses. The jet is powered by the central black hole with estimated mass of ~4*10^9 solar masses. Comparisons with VLA and ROSAT observations indicate a possible presence of an extended radio/X-ray halo surrounding 2215+020.Comment: 15 pages, 6 figures, aastex macros; accepted for publication in The Astrophysical Journal, V.546, N.2 *(January 10 2001

    QCD thermodynamics with continuum extrapolated dynamical overlap fermions

    Get PDF
    We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of NtN_t=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results

    Catches of Euxoa tritici in pheromone traps for Anarsia lineatella are due to the presence of (Z)-5-decenyl acetate as an impurity

    Get PDF
    Traps baited with the synthetic pheromone of Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) frequently captured also Euxoa tritici L. males (Lepidoptera: Noctuidae) in field tests in Hungary. As (E)-monounsaturated compounds are uncommon among sex attractants or pheromone components of Noctuidae, it was hypothesized that the Euxoa catches may have been due to impurities of the (Z) isomer in synthetic (E)-5-decenyl acetate, which is the major component in the pheromone lure of A. lineatella. Traps baited with synthetic (Z)-5-decenyl acetate captured large numbers of E. tritici, and the compound showed a clear dose–response effect. Reanalysis of the synthetic batch of (E)-5-decenyl acetate used in preparation of the A. lineatella lure showed the presence of 10% of the (Z) isomer. Traps baited with synthetic (Z)-5-decenyl acetate can be used in the future for detection and monitoring purposes of E. tritici, a widely distributed pest of cereals and other field crops. The compound also showed attraction of Euxoa seliginis Duponche

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Sigma, Xi, D, and Xi(cc) isospin multiplets, exceeding in some cases the precision of experimental measurements
    corecore