410 research outputs found

    CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?

    Full text link
    We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa

    A Catalog of Background Stars Reddened by Dust in the Taurus Dark Clouds

    Get PDF
    Normal field stars located behind dense clouds are a valuable resource in interstellar astrophysics, as they provide continua in which to study phenomena such as gas-phase and solid-state absorption features, interstellar extinction and polarization. This paper reports the results of a search for highly reddened stars behind the Taurus Dark Cloud complex. We use the Two Micron All Sky Survey (2MASS) Point Source Catalog to survey a 50 sq deg area of the cloud to a limiting magnitude of K = 10.0. Photometry in the 1.2-2.2 micron passbands from 2MASS is combined with photometry at longer infrared wavelengths (3.6-12 micron) from the Spitzer Space Telescope and the Infrared Astronomical Satellite to provide effective discrimination between reddened field stars and young stellar objects (YSOs) embedded in the cloud. Our final catalog contains 248 confirmed or probable background field stars, together with estimates of their total visual extinctions, which span the range 2-29 mag. We also identify the 2MASS source J04292083+2742074 (IRAS 04262+2735) as a previously unrecognized candidate YSO, based on the presence of infrared emission greatly in excess of that predicted for a normal reddened photosphere at wavelengths >5 microns

    The Thermal Evolution of Ices in the Environments of Newly Formed Stars: The CO_2 Diagnostic

    Get PDF
    Archival data from the Infrared Spectrometer of the Spitzer Space Telescope are used to study the 15 ÎŒm absorption feature of solid CO_2 toward 28 young stellar objects (YSOs) of approximately solar mass. Fits to the absorption profile using laboratory spectra enable categorization according to the degree of thermal processing of the ice matrix that contains the CO_2. The majority of YSOs in our sample (20 out of 28) are found to be consistent with a combination of polar (H_2O-rich) and nonpolar (CO-rich) ices at low temperature; the remainder exhibit profile structure consistent with partial crystallization as the result of significant heating. Ice-phase column densities of CO_2 are determined and compared with those of other species. Lines of sight with crystallization signatures in their spectra are found to be systematically deficient in solid-phase CO, as expected if CO is being sublimated in regions where the ices are heated to crystallization temperatures. Significant variation is found in the CO2 abundance with respect to both H_2O (the dominant ice constituent) and total dust column (quantified by the extinction, AV ). YSOs in our sample display typically higher CO_2 concentrations (independent of evidence for thermal processing) in comparison to quiescent regions of the prototypical cold molecular cloud. This suggests that enhanced CO_2 production is driven by photochemical reactions in proximity to some YSOs, and that photoprocessing and thermal processing may occur independently

    Observational Constraints on Interstellar Grain Alignment

    Full text link
    We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa

    The Nature of Carbon Dioxide Bearing Ices in Quiescent Molecular Clouds

    Get PDF
    The properties of the ices that form in dense molecular clouds represent an important set of initial conditions in the evolution of interstellar and preplanetary matter in regions of active star formation. Of the various spectral features available for study, the bending mode of solid CO2 near 15 microns has proven to be a particularly sensitive probe of physical conditions, especially temperature. We present new observations of this absorption feature in the spectrum of Q21-1, a background field star located behind a dark filament in the Cocoon Nebula (IC5146). We show the profile of the feature be consistent with a two-component (polar + nonpolar) model for the ices, based on spectra of laboratory analogs with temperatures in the range 10-20K. The polar component accounts for 85% of the CO2 in the line of sight. We compare for the first time 15 micron profiles in three widely separated dark clouds (Taurus, Serpens and IC5146), and show that they are indistinguishable to within observational scatter. Systematic differences in the observed CO2/H2O ratio in the three clouds have little or no effect on the 15 micron profile. The abundance of elemental oxygen in the ices appears to be a unifying factor, displaying consistent behavior in the three clouds. We conclude that the ice formation process is robust and uniformly efficient, notwithstanding compositional variations arising from differences in how the O is distributed between the primary species (H2O, CO2 and CO) in the ices

    Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329

    Full text link
    We explore the prospects for simultaneous, broad-band, multiwavelength polarimetric observations of GRB afterglows. We focus on the role of cosmic dust in GRB host galaxies on the observed percentage polarization of afterglows in the optical/near-infrared bands as a function of redshift. Our driving point is the afterglow of GRB 030329, for which we obtained polarimetric data in the R band and K band simultaneously about 1.5 days after the burst. We argue that polarimetric observations can be very sensitive to dust in a GRB host, because dust can render the polarization of an afterglow wavelength-dependent. We discuss the consequences for the interpretation of observational data and emphasize the important role of very early polarimetric follow-up observations in all bands, when afterglows are still bright, to study the physical properties of dust and magnetic fields in high-z galaxies.Comment: accepted for publication in Astronomy & Astrophysic

    Do Proto-Jovian Planets Drive Outflows?

    Get PDF
    We discuss the possibility that gaseous giant planets drive strong outflows during early phases of their formation. We consider the range of parameters appropriate for magneto-centrifugally driven stellar and disk outflow models and find that if the proto-Jovian planet or accretion disk had a magnetic field of >~ 10 Gauss and moderate mass inflow rates through the disk of less than 10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on scaling from empirical laws observed in proto-stellar outflows and the magneto-centrigugal disk and stellar+disk wind models suggest that winds with mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be driven from proto-Jovian planets. Prospects for detection and some implications for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap

    Evidence for Extremely High Dust Polarization Efficiency in NGC 3184

    Full text link
    Recent studies have found the Type II-plateau supernova (SN) 1999gi to be highly polarized (p_max = 5.8%, where p_max is the highest degree of polarization measured in the optical bandpass; Leonard & Filippenko 2001) and minimally reddened (E[B-V] = 0.21 +/- 0.09 mag; Leonard et al. 2002). From multiple lines of evidence, including the convincing fit of a ``Serkowski'' interstellar polarization (ISP) curve to the continuum polarization shape, we conclude that the bulk of the observed polarization is likely due to dust along the line of sight (l-o-s), and is not intrinsic to SN 1999gi. We present new spectropolarimetric observations of four distant Galactic stars close to the l-o-s to SN 1999gi (two are within 0.02 degrees), and find that all are null to within 0.2%, effectively eliminating Galactic dust as the cause of the high polarization. The high ISP coupled with the low reddening implies an extraordinarily high polarization efficiency for the dust along this l-o-s in NGC 3184: ISP / E(B-V) = 31^{+22}_{-9} % mag^{-1}. This is inconsistent with the empirical Galactic limit (ISP / E[B-V] < 9% mag^{-1}), and represents the highest polarization efficiency yet confirmed for a single sight line in either the Milky Way or an external galaxy.Comment: 27 pages, accepted for publication by the Astronomical Journa

    The Warm Ionized Medium in the Milky Way and Other Galaxies

    Full text link
    Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in several other galaxies show strong [NII]6563 (~H-alpha in some cases) and [SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios (e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models reproduce the observed spectra, providing extra heating beyond that supplied by photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the Perseus arm, there are similar results, with a domposition consistent with the Galactic abundance gradient. The requirements for NGC 891 are similar to the Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come about if most of the ionizing radiation is supplied by stars with T~50000 K. Either their radiation must propagate from the plane to high |z| through very little intervening matter, or else the stars are located at high |z|. The total power requirement of the extra heating is <15% of the photoionization power. [O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but [S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap
    • 

    corecore