3,484 research outputs found

    Observer with a constant proper acceleration

    Full text link
    Relying on the equivalence principle, a first approach of the general theory of relativity is presented using the spacetime metric of an observer with a constant proper acceleration. Within this non inertial frame, the equation of motion of a freely moving object is studied and the equation of motion of a second accelerated observer with the same proper acceleration is examined. A comparison of the metric of the accelerated observer with the metric due to a gravitational field is also performed.Comment: 5 figure

    Nuclear Incompressibility in Asymmetric Systems at Finite Temperature and Entropy

    Full text link
    The nuclear incompressibility κ\kappa is investigated in asymmetric systems in a mean field model. The calculations are done at zero and finite temperatures and include surface, Coulomb and symmetry energy terms for several equations of state. Also considered is the behavior of the incompressibility at constant entropy kappaQkappa_Q which is shown to have a very different behavior than the isothermal kappakappa. Namely, kappaQkappa_Q decreases with increasing entropy while the isothermal kappakappa increases with increasing TT. A duality is found between the adiabatic kappaQkappa_Q and the T=0 isothermal kappakappa. Analytic and also simple approximate expressions for kappakappa are given.Comment: 11 page

    Real Time Control of the Active MHD Diagnostic on Alcator C-Mod

    Get PDF

    Using state space differential geometry for nonlinear blind source separation

    Full text link
    Given a time series of multicomponent measurements of an evolving stimulus, nonlinear blind source separation (BSS) seeks to find a "source" time series, comprised of statistically independent combinations of the measured components. In this paper, we seek a source time series with local velocity cross correlations that vanish everywhere in stimulus state space. However, in an earlier paper the local velocity correlation matrix was shown to constitute a metric on state space. Therefore, nonlinear BSS maps onto a problem of differential geometry: given the metric observed in the measurement coordinate system, find another coordinate system in which the metric is diagonal everywhere. We show how to determine if the observed data are separable in this way, and, if they are, we show how to construct the required transformation to the source coordinate system, which is essentially unique except for an unknown rotation that can be found by applying the methods of linear BSS. Thus, the proposed technique solves nonlinear BSS in many situations or, at least, reduces it to linear BSS, without the use of probabilistic, parametric, or iterative procedures. This paper also describes a generalization of this methodology that performs nonlinear independent subspace separation. In every case, the resulting decomposition of the observed data is an intrinsic property of the stimulus' evolution in the sense that it does not depend on the way the observer chooses to view it (e.g., the choice of the observing machine's sensors). In other words, the decomposition is a property of the evolution of the "real" stimulus that is "out there" broadcasting energy to the observer. The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see http://www.geocities.com/dlevin2001/ . New version is identical to original version except for URL in the bylin

    Incoherent dynamics in neutron-matter interaction

    Get PDF
    Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and using the Fermi pseudopotential we show that the commutator term is an optical potential leading to well-known relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse scattering and attenuation of the coherent beam into account, thus warranting fulfilment of the optical theorem. The relevance of this analysis to experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.

    A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e

    Get PDF
    In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells

    An analytic expression for the electronic correlation term of the kinetic functional

    Full text link
    We propose an analytic formula for the non-local Fisher information functional, or electronic kinetic correlation term, appearing in the expression of the kinetic density functional. Such an explicit formula is constructed on the basis of well-founded physical arguments and a rigorous mathematical prescription

    The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules

    Get PDF
    Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and B) which differ in their bulk compositions, phase compositions, and CL properties. The group A chondrules in both meteorites show evidence for major loss of material by evaporation(i.e. elemental abundance patterns, size, redox state, olivine-pyroxene abundances). Group A and B chondrules probably formed from common or very similar precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect on its chondrules
    corecore