Given a time series of multicomponent measurements of an evolving stimulus,
nonlinear blind source separation (BSS) seeks to find a "source" time series,
comprised of statistically independent combinations of the measured components.
In this paper, we seek a source time series with local velocity cross
correlations that vanish everywhere in stimulus state space. However, in an
earlier paper the local velocity correlation matrix was shown to constitute a
metric on state space. Therefore, nonlinear BSS maps onto a problem of
differential geometry: given the metric observed in the measurement coordinate
system, find another coordinate system in which the metric is diagonal
everywhere. We show how to determine if the observed data are separable in this
way, and, if they are, we show how to construct the required transformation to
the source coordinate system, which is essentially unique except for an unknown
rotation that can be found by applying the methods of linear BSS. Thus, the
proposed technique solves nonlinear BSS in many situations or, at least,
reduces it to linear BSS, without the use of probabilistic, parametric, or
iterative procedures. This paper also describes a generalization of this
methodology that performs nonlinear independent subspace separation. In every
case, the resulting decomposition of the observed data is an intrinsic property
of the stimulus' evolution in the sense that it does not depend on the way the
observer chooses to view it (e.g., the choice of the observing machine's
sensors). In other words, the decomposition is a property of the evolution of
the "real" stimulus that is "out there" broadcasting energy to the observer.
The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see
http://www.geocities.com/dlevin2001/ . New version is identical to original
version except for URL in the bylin