490 research outputs found
On the positive eigenvalues and eigenvectors of a non-negative matrix
The paper develops the general theory for the items in the title, assuming
that the matrix is countable and cofinal.Comment: Version 2 allows the matrix to have zero row(s) and rows with
infinitely many non-zero entries. In addition the introduction has been
rewritte
Advanced software techniques for space shuttle data management systems Final report
Airborne/spaceborn computer design and techniques for space shuttle data management system
Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer.
BackgroundWe previously developed a bladder cancer-specific ligand (PLZ4) that can specifically bind to both human and dog bladder cancer cells in vitro and in vivo. We have also developed a micelle nanocarrier drug-delivery system. Here, we assessed whether the targeting micelles decorated with PLZ4 on the surface could specifically target dog bladder cancer cells.Materials and methodsMicelle-building monomers (ie, telodendrimers) were synthesized through conjugation of polyethylene glycol with a cholic acid cluster at one end and PLZ4 at the other, which then self-assembled in an aqueous solution to form micelles. Dog bladder cancer cell lines were used for in vitro and in vivo drug delivery studies.ResultsCompared to nontargeting micelles, targeting PLZ4 micelles (23.2 ± 8.1 nm in diameter) loaded with the imaging agent DiD and the chemotherapeutic drug paclitaxel or daunorubicin were more efficient in targeted drug delivery and more effective in cell killing in vitro. PLZ4 facilitated the uptake of micelles together with the cargo load into the target cells. We also developed an orthotopic invasive dog bladder cancer xenograft model in mice. In vivo studies with this model showed the targeting micelles were more efficient in targeted drug delivery than the free dye (14.3Ă; P < 0.01) and nontargeting micelles (1.5Ă; P < 0.05).ConclusionTargeting micelles decorated with PLZ4 can selectively target dog bladder cancer cells and potentially be developed as imaging and therapeutic agents in a clinical setting. Preclinical studies of targeting micelles can be performed in dogs with spontaneous bladder cancer before proceeding with studies using human patients
General moments of the inverse real Wishart distribution and orthogonal Weingarten functions
Let be a random positive definite symmetric matrix distributed according
to a real Wishart distribution and let be its inverse
matrix. We compute general moments explicitly. To do so, we employ the orthogonal Weingarten
function, which was recently introduced in the study for Haar-distributed
orthogonal matrices. As applications, we give formulas for moments of traces of
a Wishart matrix and its inverse.Comment: 29 pages. The last version differs from the published version, but it
includes Appendi
Towards Landslide Predictions: Two Case Studies
In a previous work [Helmstetter, 2003], we have proposed a simple physical
model to explain the accelerating displacements preceding some catastrophic
landslides, based on a slider-block model with a state and velocity dependent
friction law. This model predicts two regimes of sliding, stable and unstable
leading to a critical finite-time singularity. This model was calibrated
quantitatively to the displacement and velocity data preceding two landslides,
Vaiont (Italian Alps) and La Clapi\`ere (French Alps), showing that the former
(resp. later) landslide is in the unstable (resp. stable) sliding regime. Here,
we test the predictive skills of the state-and-velocity-dependent model on
these two landslides, using a variety of techniques. For the Vaiont landslide,
our model provides good predictions of the critical time of failure up to 20
days before the collapse. Tests are also presented on the predictability of the
time of the change of regime for la Clapi\`ere landslide.Comment: 30 pages with 12 eps figure
Pollen DNA barcoding:Current applications and future prospects.
Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.publishersversionPeer reviewe
The occupation of a box as a toy model for the seismic cycle of a fault
We illustrate how a simple statistical model can describe the quasiperiodic
occurrence of large earthquakes. The model idealizes the loading of elastic
energy in a seismic fault by the stochastic filling of a box. The emptying of
the box after it is full is analogous to the generation of a large earthquake
in which the fault relaxes after having been loaded to its failure threshold.
The duration of the filling process is analogous to the seismic cycle, the time
interval between two successive large earthquakes in a particular fault. The
simplicity of the model enables us to derive the statistical distribution of
its seismic cycle. We use this distribution to fit the series of earthquakes
with magnitude around 6 that occurred at the Parkfield segment of the San
Andreas fault in California. Using this fit, we estimate the probability of the
next large earthquake at Parkfield and devise a simple forecasting strategy.Comment: Final version of the published paper, with an erratum and an
unpublished appendix with some proof
Survival of branching random walks in random environment
We study survival of nearest-neighbour branching random walks in random
environment (BRWRE) on . A priori there are three different
regimes of survival: global survival, local survival, and strong local
survival. We show that local and strong local survival regimes coincide for
BRWRE and that they can be characterized with the spectral radius of the first
moment matrix of the process. These results are generalizations of the
classification of BRWRE in recurrent and transient regimes. Our main result is
a characterization of global survival that is given in terms of Lyapunov
exponents of an infinite product of i.i.d. random matrices.Comment: 17 pages; to appear in Journal of Theoretical Probabilit
On the Occurrence of Finite-Time-Singularities in Epidemic Models of Rupture, Earthquakes and Starquakes
We present a new kind of critical stochastic finite-time-singularity, relying
on the interplay between long-memory and extreme fluctuations. We illustrate it
on the well-established epidemic-type aftershock (ETAS) model for aftershocks,
based solely on the most solidly documented stylized facts of seismicity
(clustering in space and in time and power law Gutenberg-Richter distribution
of earthquake energies). This theory accounts for the main observations (power
law acceleration and discrete scale invariant structure) of critical rupture of
heterogeneous materials, of the largest sequence of starquakes ever attributed
to a neutron star as well as of earthquake sequences.Comment: Revtex document of 4 pages including 1 eps figur
A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland
The vascular flora of Britain and Ireland is among the most extensively studied in the world, but the current knowledge base is fragmentary, with taxonomic, ecological and genetic information scattered across different resources. Here we present the first comprehensive data repository of native and alien species optimized for fast and easy online access for ecological, evolutionary and conservation analyses. The inventory is based on the most recent reference flora of Britain and Ireland, with taxon names linked to unique Kew taxon identifiers and DNA barcode data. Our data resource for 3,227 species and 26 traits includes existing and unpublished genome sizes, chromosome numbers and life strategy and life-form assessments, along with existing data on functional traits, species distribution metrics, hybrid propensity, associated biomes, realized niche description, native status and geographic origin of alien species. This resource will facilitate both fundamental and applied research and enhance our understanding of the floraâs composition and temporal changes to inform conservation efforts in the face of ongoing climate change and biodiversity loss
- âŠ