We study survival of nearest-neighbour branching random walks in random
environment (BRWRE) on Z. A priori there are three different
regimes of survival: global survival, local survival, and strong local
survival. We show that local and strong local survival regimes coincide for
BRWRE and that they can be characterized with the spectral radius of the first
moment matrix of the process. These results are generalizations of the
classification of BRWRE in recurrent and transient regimes. Our main result is
a characterization of global survival that is given in terms of Lyapunov
exponents of an infinite product of i.i.d. 2×2 random matrices.Comment: 17 pages; to appear in Journal of Theoretical Probabilit