6,429 research outputs found

    FORTRAN programming - A self-taught course

    Get PDF
    Comprehensive programming course begins with numerical systems and basic concepts, proceeds systematically through FORTRAN language elements, and concludes with discussion of programming techniques. Course is suitable either for individual study or for group study on informal basis

    A self-study course in FORTRAN programming. Volume 2 - Workbook

    Get PDF
    Self study workbook for course in FORTRAN programming - Vol.

    A self-study course in FORTRAN programming. Volume 1 - Textbook

    Get PDF
    Self study textbook for course in FORTRAN programming - Vol.

    Quasi-Two-Dimensional Dynamics of Plasmas and Fluids

    Get PDF
    In the lowest order of approximation quasi-twa-dimensional dynamics of planetary atmospheres and of plasmas in a magnetic field can be described by a common convective vortex equation, the Charney and Hasegawa-Mirna (CHM) equation. In contrast to the two-dimensional Navier-Stokes equation, the CHM equation admits "shielded vortex solutions" in a homogeneous limit and linear waves ("Rossby waves" in the planetary atmosphere and "drift waves" in plasmas) in the presence of inhomogeneity. Because of these properties, the nonlinear dynamics described by the CHM equation provide rich solutions which involve turbulent, coherent and wave behaviors. Bringing in non ideal effects such as resistivity makes the plasma equation significantly different from the atmospheric equation with such new effects as instability of the drift wave driven by the resistivity and density gradient. The model equation deviates from the CHM equation and becomes coupled with Maxwell equations. This article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect of plasmas and planetary atmosphere starting from the introduction of the ideal model equation (CHM equation) and extending into the most recent progress in plasma turbulence.U. S. Department of Energy DE-FG05-80ET-53088Ministry of Education, Science and Culture of JapanFusion Research Cente

    Neel order in doped quasi one-dimensional antiferromagnets

    Full text link
    We study the Neel temperature of quasi one-dimensional S=1/2 antiferromagnets containing non-magnetic impurities. We first consider the temperature dependence of the staggered susceptibility of finite chains with open boundary conditions, which shows an interesting difference for even and odd length chains. We then use a mean field theory treatment to incorporate the three dimensional inter-chain couplings. The resulting Neel temperature shows a pronounced drop as a function of doping by up to a factor of 5.Comment: 4 pages in revtex4 format including 2 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/staggered.pd

    Beat-wave generation of plasmons in semiconductor plasmas

    Full text link
    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro
    • …
    corecore