196 research outputs found

    Phenotyping malignant hyperthermia susceptibility by measuring halothane‐induced changes in myoplasmic calcium concentration in cultured human skeletal muscle cells

    Get PDF
    Background. Malignant hyperthermia (MH) is a potentially lethal disease triggered by volatile anaesthetics and succinylcholine in genetically predisposed individuals. Because of the heterogenetic nature of MH, a simple genetic‐based diagnostic test is not feasible and diagnosis requires an invasive open muscle biopsy followed by the in vitro contracture test (IVCT). Our aim was to establish if measurements of halothane‐induced increases in intracellular calcium ion concentration [Ca2+]i in cultured human skeletal muscle cells can be used to phenotype MH susceptibility and if different mutations in the ryanodine receptor (RYR1) gene affect halothane‐induced increases in [Ca2+]i. Methods. Primary cultures of human skeletal muscle cells were established from 54 individuals diagnosed by the IVCT according to the protocol of the European MH Group as: MH susceptible (n=22), MH negative (n=18) or MH equivocal (n=14). All individuals were screened for the presence of the most common mutations in the RYR1 gene. [Ca2+]i was measured by fluorescent digital microscopy using fura‐2/AM in 10 cells from each patient at five different halothane concentrations. Results. The halothane‐induced increase in [Ca2+]i differed significantly between the three diagnostic groups. Different mutations of the RYR1 gene did not have a specific impact on halothane‐induced increases in [Ca2+]i. Conclusions. Measurements of [Ca2+]i in human skeletal muscle cells can be used to phenotype MH susceptibility; however, we did not observe a specific effect of any mutation in the RYR1 gene on the halothane‐induced increase in [Ca2+]i. Br J Anaesth 2002; 89: 571-

    Major Surface Glycoproteins of Insect Forms of Trypanosoma brucei Are Not Essential for Cyclical Transmission by Tsetse

    Get PDF
    Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Risk Factors for Recurrent Exacerbations in the General-Practitioner-Based Swiss Chronic Obstructive Pulmonary Disease (COPD) Cohort.

    Get PDF
    BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) often suffer from acute exacerbations. Our objective was to describe recurrent exacerbations in a GP-based Swiss COPD cohort and develop a statistical model for predicting exacerbation. METHODS COPD cohort demographic and medical data were recorded for 24 months, by means of a questionnaire-based COPD cohort. The data were split into training (75%) and validation (25%) datasets. A negative binomial regression model was developed using the training dataset to predict the exacerbation rate within 1 year. An exacerbation prediction model was developed, and its overall performance was validated. A nomogram was created to facilitate the clinical use of the model. RESULTS Of the 229 COPD patients analyzed, 77% of the patients did not experience exacerbation during the follow-up. The best subset in the training dataset revealed that lower forced expiratory volume, high scores on the MRC dyspnea scale, exacerbation history, and being on a combination therapy of LABA + ICS (long-acting beta-agonists + Inhaled Corticosteroids) or LAMA + LABA (Long-acting muscarinic receptor antagonists + long-acting beta-agonists) at baseline were associated with a higher rate of exacerbation. When validated, the area-under-curve (AUC) value was 0.75 for one or more exacerbations. The calibration was accurate (0.34 predicted exacerbations vs 0.28 observed exacerbations). CONCLUSION Nomograms built from these models can assist clinicians in the decision-making process of COPD care

    Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations

    Get PDF
    The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials

    Correction: Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations.

    Get PDF
    The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials

    Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations.

    Get PDF
    The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials

    PSSA-2, a Membrane-Spanning Phosphoprotein of Trypanosoma brucei, Is Required for Efficient Maturation of Infection

    Get PDF
    The coat of Trypanosoma brucei consists mainly of glycosylphosphatidylinositol-anchored proteins that are present in several million copies and are characteristic of defined stages of the life cycle. While these major components of the coats of bloodstream forms and procyclic (insect midgut) forms are well characterised, very little is known about less abundant stage-regulated surface proteins and their roles in infection and transmission. By creating epitope-tagged versions of procyclic-specific surface antigen 2 (PSSA-2) we demonstrated that it is a membrane-spanning protein that is expressed by several different life cycle stages in tsetse flies, but not by parasites in the mammalian bloodstream. In common with other membrane-spanning proteins in T. brucei, PSSA-2 requires its cytoplasmic domain in order to exit the endoplasmic reticulum. Correct localisation of PSSA-2 requires phosphorylation of a cytoplasmic threonine residue (T305), a modification that depends on the presence of TbMAPK4. Mutation of T305 to alanine (T305A) has no effect on the localisation of the protein in cells that express wild type PSSA-2. In contrast, this protein is largely intracellular when expressed in a null mutant background. A variant with a T305D mutation gives strong surface expression in both the wild type and null mutant, but slows growth of the cells, suggesting that it may function as a dominant negative mutant. The PSSA-2 null mutant exhibits no perceptible phenotype in culture and is fully competent at establishing midgut infections in tsetse, but is defective in colonising the salivary glands and the production of infectious metacyclic forms. Given the protein's structure and the effects of mutation of T305 on proliferation and localisation, we postulate that PSSA-2 might sense and transmit signals that contribute to the parasite's decision to divide, differentiate or migrate

    Feasibility, acceptability and effectiveness of integrated care for COPD patients: a mixed methods evaluation of a pilot community-based programme.

    Get PDF
    The aim of this study was to assess the feasibility, acceptability and effectiveness of a pilot COPD integrated care programme implemented in Valais, Switzerland. The programme was adapted from the self-management programme Living Well with COPD, and included the following elements: self-management patient-education group sessions, telephone and medical follow-ups, multidisciplinary teams, training of healthcare professionals, and evidence-based COPD care. A process and outcome evaluation of the pilot phase of the programme was conducted by means of qualitative and quantitative methods. Reach (coverage, participation rates), dosage (interventions carried out), fidelity (delivered as intended) and stakeholders' acceptance of the programme were evaluated through data monitoring and conduct of focus groups with patients and healthcare professionals. Effectiveness was assessed with pre-post analyses (before and after the intervention). The primary outcome measures were; (1) generic and disease-specific quality of life (36-Item Short Form Health Survey, Chronic Respiratory Questionnaire); and (2) hospitalisations (all-cause and for acute exacerbations) in the past 12 months. Secondary outcomes included self-efficacy, number of exacerbations and exercise capacity. Finally, controlled pre-post comparisons were also made with patients from the Swiss COPD Cohort for three common outcome measures (dyspnoea [mMRC score], number of exacerbations and smoking status). During the first 2 years of the programme, eight series of group-based education sessions were delivered to 57 patients with COPD in three different locations of the canton of Valais. Coverage objectives were achieved and attendance rate at the education sessions was high (83.6%). Patients' and healthcare professionals' reported a high degree of satisfaction, except for multidisciplinarity and transfer of information. Exploration of the effectiveness of this pilot programme suggested positive pre-post results at 12 months, with improvements in terms of health-related quality of life, self-efficacy, exercise capacity, immunisation coverage and Patient Assessment of Chronic Illness Care score. No other outcome, including the number of hospital admissions, differed significantly after 12 months. We observed no differences from the control group. The evaluation demonstrated the feasibility and acceptability of the programme and confirmed the relevance of mixed method process evaluation to adjust and improve programme implementation. The introduction of multidisciplinary teams in a context characterised by fragmentation of care was identified as the main challenge in the programme implementation and could not be achieved as expected. Despite this area for improvement, patients' feedback and early effectiveness results confirmed the benefits of COPD integrated care programmes emphasising self-management education

    The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery

    Get PDF
    Legionella pneumophila infects human alveolar macrophages and is responsible for Legionnaire’s disease, a severe form of pneumonia. L. pneumophila encodes more than 300 putative effectors, which are translocated into the host cell via the Dot/Icm type IV secretion system. These effectors highjack the host’s cellular processes to allow bacterial intracellular growth and replication. Here we adopted a multidisciplinary approach to investigate WipB, a Dot/Icm effector of unknown function. The crystal structure of the N-terminal domain at 1.7 Å resolution comprising residues 25 to 344 revealed that WipB harbours a Ser/Thr phosphatase domain related to the eukaryotic phospho-protein phosphatase (PPP) family. The C-terminal domain (residues 365–524) is sufficient to pilot the effector to acidified LAMP1-positive lysosomal compartments, where WipB interacts with the v-ATPase and the associated LAMTOR1 phosphoprotein, key components of the lysosomal nutrient sensing (LYNUS) apparatus that controls the mammalian target of rapamycin (mTORC1) kinase complex at the lysosomal surface. We propose that WipB is a lysosome-targeted phosphatase that modulates cellular nutrient sensing and the control of energy metabolism during Legionella infection
    corecore