24 research outputs found

    Antihypoxic potentiation of standard therapy for experimental colorectal liver metastasis through myo-inositol trispyrophosphate

    Full text link
    PURPOSE: Tumor hypoxia activates hypoxia-inducible factors (Hifs), which induce a range of malignant changes including vascular abnormalities. Here, we determine whether inhibition of the hypoxic tumor response through myo-inositol trispyrophosphate (ITPP), a compound with antihypoxic properties, is able to cause prolonged vascular normalization that can be exploited to improve standard-of-care treatment. EXPERIMENTAL DESIGN: We tested ITPP on two syngeneic orthotopic mouse models of lethal colorectal cancer liver metastasis. Tumors were monitored by MRI and analyzed for the hypoxic response and their malignant potential. A Hif activator and in vitro assays were used to define the working mode of ITPP. Hypoxic response and vasculature were re-evaluated 4 weeks after treatment. Finally, we determined survival following ITPP monotherapy, FOLFOX monotherapy, FOLFOX plus Vegf antibody, and FOLFOX plus ITPP, both overlapping and sequential. RESULTS: ITPP reduced tumor load, efficiently inhibited the hypoxic response, and improved survival. These effects were lost when mice were pretreated with a Hif activator. Its immediate effects on the hypoxic response, including an apparent normalization of tumor vasculature, persisted for at least 4 weeks after treatment cessation. Compared with FOLFOX alone, Vegf antibody combined with FOLFOX prolonged survival by 140%, regardless of whether FOLFOX was given in overlap or after ITPP exposure. CONCLUSIONS: Our findings reveal a truly antihypoxic mechanism for ITPP and demonstrate the capacity of this nontoxic compound to potentiate the efficacy of existing anticancer treatment in a way amenable to clinical translation. Clin Cancer Res; 22(23); 5887-97

    Deoxysphingolipids, a novel biomarker for type 2 diabetes, are cytotoxic for insulin-producing cells

    Full text link
    Irreversible failure of pancreatic β-cells is the main culprit in the pathophysiology of diabetes mellitus, a disease that is now a major global epidemic. Recently, elevated plasma levels of deoxysphingolipids, including 1-deoxysphinganine, have been identified as novel biomarkers for the disease. In this study, we analyzed whether deoxysphingolipids directly compromise the functionality of insulin-producing Ins-1 cells and primary islets. Treatment with 1-deoxysphinganine induced dose-dependent cytotoxicity with senescent, necrotic and apoptotic characteristics and compromised glucose-stimulated insulin secretion. In addition, 1-deoxysphinganine altered cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the RhoGTPase Rac1. Moreover, 1-deoxysphinganine selectively up-regulated ceramide synthase 5 expression and was converted to 1-deoxy-dihydroceramides, without altering normal ceramide levels. Inhibition of intracellular 1-deoxysphinganine trafficking and ceramide synthesis improved the viability of the cells, indicating that the intracellular metabolites of 1-deoxysphinganine contribute to its cytotoxicity. Analyses of signaling pathways identified JNK and p38 MAPK as antagonistic effectors of cellular senescence. Our results revealed that 1-deoxysphinganine is a cytotoxic lipid for insulin-producing cells, suggesting that the increased levels of this sphingolipid observed in diabetic patients may contribute to the reduced functionality of pancreatic β-cells. Thus, targeting deoxy-sphingolipid synthesis may complement the currently available therapies of diabetes

    STAT3 and MAPK signaling maintains overexpression of the heat shock proteins 90a and b in multiple myeloma cells, which critically contribute to tumor cell survival

    No full text
    The combined blockade of the IL-6R/STAT3 and the MAPK signaling pathways has been shown to inhibit bone marrow microenvironment (BMM)-mediated survival of multiple myeloma (MM) cells. Here, we identify the molecular chaperones heat shock protein (Hsp) 90alpha and beta as target genes of both pathways. SiRNA-mediated knockdown of Hsp90 or treatment with the novel Hsp90 inhibitor 17-DMAG attenuated the levels of STAT3 and phospho-ERK and decreased the viability of MM cells. Although knockdown of Hsp90beta -- unlike knockdown of Hsp90alpha -- was sufficient to induce apoptosis, this effect was strongly increased when both Hsp90s were targeted, indicating a cooperation of both. Given the importance of the BMM for drug resistance and MM cell survival, apoptosis induced by Hsp90 inhibition was not mitigated in the presence of bone marrow stromal cells, osteoclasts or endothelial cells. These observations suggest, that a positive feedback loop consisting of Hsp90alpha/beta and major signaling pathways supports the survival of MM cells. Finally, in situ overexpression of both Hsp90 proteins was observed in the majority of MM, but not in MGUS or in normal plasma cells. Our results underpin a role for Hsp90alpha and beta in MM pathogenesis

    Physiol Genomics

    No full text
    Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover pathomechanisms, we performed genome-wide gene expression analysis. We identified a set of 1054 genes significantly deregulated in pair-wise comparisons between RA and osteoarthritis (OA) patients, RA and normal donors (ND), or OA and ND. Correlation analysis revealed gene sets regulated identically in all three groups. As a prominent example secreted phosphoprotein 1 (SPP1) was identified to be significantly upregulated in RA as compared to both OA and ND. SPP1 expression was found to correlate with genes expressed during an inflammatory response, T cell activation and apoptosis, suggesting common underlying regulatory networks. A sub-classification of RA patients was achieved on the basis of proteoglycan 4 (PRG4) expression distinguishing PRG4 high- and low expressors and reflecting the heterogeneity of the disease. In addition, we found that low PRG4 expression was associated with a more aggressive disease stage, which is in accordance with PRG4 loss-of-function mutations causing camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Altogether we provide evidence for molecular signatures of RA and RA subclasses, sets of new candidate genes as well as for candidate gene networks, which extend our understanding of disease mechanisms and may lead to an improved diagnosis

    Long-term health sequelae and quality of life at least 6 months after infection with SARS-CoV-2: design and rationale of the COVIDOM-study as part of the NAPKON population-based cohort platform (POP)

    Get PDF
    Purpose Over the course of COVID-19 pandemic, evidence has accumulated that SARS-CoV-2 infections may affect multiple organs and have serious clinical sequelae, but on-site clinical examinations with non-hospitalized samples are rare. We, therefore, aimed to systematically assess the long-term health status of samples of hospitalized and non-hospitalized SARS-CoV-2 infected individuals from three regions in Germany. Methods The present paper describes the COVIDOM-study within the population-based cohort platform (POP) which has been established under the auspices of the NAPKON infrastructure (German National Pandemic Cohort Network) of the national Network University Medicine (NUM). Comprehensive health assessments among SARS-CoV-2 infected individuals are conducted at least 6 months after the acute infection at the study sites Kiel, Wurzburg and Berlin. Potential participants were identified and contacted via the local public health authorities, irrespective of the severity of the initial infection. A harmonized examination protocol has been implemented, consisting of detailed assessments of medical history, physical examinations, and the collection of multiple biosamples (e.g., serum, plasma, saliva, urine) for future analyses. In addition, patient-reported perception of the impact of local pandemic-related measures and infection on quality-of-life are obtained. Results As of July 2021, in total 6813 individuals infected in 2020 have been invited into the COVIDOM-study. Of these, about 36% wished to participate and 1295 have already been examined at least once. Conclusion NAPKON-POP COVIDOM-study complements other Long COVID studies assessing the long-term consequences of an infection with SARS-CoV-2 by providing detailed health data of population-based samples, including individuals with various degrees of disease severity
    corecore