177 research outputs found
GI2T/REGAIN spectro-interferometry with a new infrared beam combiner
We have built an infrared beam combiner for the GI2T/REGAIN interferometer of
the Observatoire de la Cote d'Azur. The beam combiner allows us to record
spectrally dispersed Michelson interference fringes in the near-infrared J-, H-
or K-bands. The beam combiner has the advantage that Michelson interferograms
can simultaneously be recorded in about 128 different spectral channels. The
tilt of the spectrally dispersed fringes is a measure of the instantaneous
optical path difference. We present the optical design of the beam combiner and
GI2T/REGAIN observations of the Mira star R Cas with this beam combiner in the
spectral range of 2.00 micron - 2.18 micron (observations on 22 and 25 August
1999; variability phase 0.08; V-magnitude approx. 6; seven baselines between
12m and 24m; reference stars Vega and Beta Peg). The spectrograph of the beam
combiner consists of an anamorphotic cylindrical lens system, an image plane
slit, and a grism. A system of digital signal processors calculates the
ensemble average power spectrum of the spectrally dispersed Michelson
interferograms and the instantaneous optical path difference error in real
time. From the observed R Cas visibilities at baselines 12.0m, 13.8m and 13.9m,
a 2.1 micron uniform-disk diameter of 25.3mas +/-3.3mas was derived. The
unusually high visibility values at baselines >16m show that the stellar
surface of R Cas is more complex than previously assumed. The visibility values
at baselines >16m can be explained by high-contrast surface structure on the
stellar surface of R Cas or other types of unexpected center-to-limb
variations. The R Cas observations were compared with theoretical Mira star
models yielding a linear Rosseland radius of 276Rsun +/-66Rsun and an effective
temperature of 2685K+/-238K for R Cas at phase 0.08.Comment: 10 pages, 6 figures, see also
http://www.mpifr-bonn.mpg.de/div/speckle, SPIE conf 4006 "Interferometry in
Optical Astronomy", in pres
Control interface concepts for CHARA 6-telescope fringe tracking with CHAMP+MIRC
This is the author accepted manuscript. The final version is available from SPIE via the DOI in this record.Cophasing six telescopes from the CHARA array, the CHARA-Michigan Phasetracker (CHAMP) and Michigan Infrared Combiner (MIRC) are pushing the frontiers of infrared long-baseline interferometric imaging in key scientific areas such as star- and planet-formation. Here we review our concepts and recent improvements on the CHAMP and MIRC control interfaces, which establish the communication to the real-time data recording & fringe tracking code, provide essential performance diagnostics, and assist the observer in the alignment and flux optimization procedure. For fringe detection and tracking with MIRC, we have developed a novel matrix approach, which provides predictions for the fringe positions based on cross-fringe information.This work was performed in part under contract with the California Institute of Technology
(Caltech) funded by NASA through the Sagan Fellowship Program
Resolving Vega and the inclination controversy with CHARA/MIRC
Optical and infrared interferometers definitively established that the
photometric standard Vega (alpha Lyrae) is a rapidly rotating star viewed
nearly pole-on. Recent independent spectroscopic analyses could not reconcile
the inferred inclination angle with the observed line profiles, preferring a
larger inclination. In order to resolve this controversy, we observed Vega
using the six-beam Michigan Infrared Combiner on the Center for High Angular
Resolution Astronomy Array. With our greater angular resolution and dense
(u,v)-coverage, we find Vega is rotating less rapidly and with a smaller
gravity darkening coefficient than previous interferometric results. Our models
are compatible with low photospheric macroturbulence and also consistent with
the possible rotational period of ~0.71 days recently reported based on
magnetic field observations. Our updated evolutionary analysis explicitly
incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10_-0.15
Msun and an age 700-75+150 Myrs, substantially older than previous estimates
with errors dominated by lingering metallicity uncertainties
(Z=0.006+0.003-0.002).Comment: Accepted for publication in ApJ Letter
Imaging the Algol Triple System in H Band with the CHARA Interferometer
Algol (Beta Per) is an extensively studied hierarchical triple system whose
inner pair is a prototype semi-detached binary with mass transfer occurring
from the sub-giant secondary to the main-sequence primary. We present here the
results of our Algol observations made between 2006 and 2010 at the CHARA
interferometer with the Michigan Infrared Combiner in the H band. The use of
four telescopes with long baselines allows us to achieve better than 0.5 mas
resolution and to unambiguously resolve the three stars. The inner and outer
orbital elements, as well as the angular sizes and mass ratios for the three
components are determined independently from previous studies. We report a
significantly improved orbit for the inner stellar pair with the consequence of
a 15% change in the primary mass compared to previous studies. We also
determine the mutual inclination of the orbits to be much closer to
perpendicularity than previously established. State-of-the-art image
reconstruction algorithms are used to image the full triple system. In
particular an image sequence of 55 distinct phases of the inner pair orbit is
reconstructed, clearly showing the Roche-lobe-filling secondary revolving
around the primary, with several epochs corresponding to the primary and
secondary eclipses
CHARA/MIRC observations of two M supergiants in Perseus OB1: temperature, Bayesian modeling, and compressed sensing imaging
Two red supergiants of the Per OB1 association, RS Per and T Per, have been
observed in H band using the MIRC instrument at the CHARA array. The data show
clear evidence of departure from circular symmetry. We present here new
techniques specially developed to analyze such cases, based on state-of-the-art
statistical frameworks. The stellar surfaces are first modeled as limb-darkened
discs based on SATLAS models that fit both MIRC interferometric data and
publicly available spectrophotometric data. Bayesian model selection is then
used to determine the most probable number of spots. The effective surface
temperatures are also determined and give further support to the recently
derived hotter temperature scales of red su- pergiants. The stellar surfaces
are reconstructed by our model-independent imaging code SQUEEZE, making use of
its novel regularizer based on Compressed Sensing theory. We find excellent
agreement between the model-selection results and the reconstructions. Our
results provide evidence for the presence of near-infrared spots representing
about 3-5% of the stellar flux
Toward Direct Detection of Hot Jupiters with Precision Closure Phase: Calibration Studies and First Results from the CHARA Array
Direct detection of thermal emission from nearby hot Jupiters has greatly
advanced our knowledge of extrasolar planets in recent years. Since hot Jupiter
systems can be regarded as analogs of high contrast binaries, ground-based
infrared long baseline interferometers have the potential to resolve them and
detect their thermal emission with precision closure phase - a method that is
immune to the systematic errors induced by the Earth's atmosphere. In this
work, we present closure phase studies toward direct detection of nearby hot
Jupiters using the CHARA interferometer array outfitted with the MIRC
instrument. We carry out closure phase simulations and conduct a large number
of observations for the best candidate {\upsion} And. Our experiments suggest
the method is feasible with highly stable and precise closure phases. However,
we also find much larger systematic errors than expected in the observations,
most likely caused by dispersion across different wavelengths. We find that
using higher spectral resolution modes (e.g., R=150) can significantly reduce
the systematics. By combining all calibrators in an observing run together, we
are able to roughly recalibrate the lower spectral resolution data, allowing us
to obtain upper limits of the star-planet contrast ratios of {\upsion} And b
across the H band. The data also allow us to get a refined stellar radius of
1.625\pm0.011 R\odot. Our best upper limit corresponds to a contrast ratio of
2.1\times10^3:1 with 90% confidence level at 1.52{\mu}m, suggesting that we are
starting to have the capability of constraining atmospheric models of hot
Jupiters with interferometry. With recent and upcoming improvements of
CHARA/MIRC, the prospect of detecting emission from hot Jupiters with closure
phases is promising.Comment: 30 pages, including 9 figures and 4 tables. Published in PASP in
August 201
Colder and Hotter: Interferometric Imaging of _ Cassiopeiae and _ Leonis
Near-infrared interferometers have recently imaged a number of rapidly rotating A-type stars, finding levels of gravity darkening inconsistent with theoretical expectations. Here, we present new imaging of both a cooler star _Â Cas (F2IV) and a hotter one _ Leo (B7V) using the CHARA array and the MIRC instrument at the H band. Adopting a solid-body rotation model with a simple gravity darkening prescription, we modeled the stellar geometric properties and surface temperature distributions, confirming that both stars are rapidly rotating and show gravity darkening anomalies. We estimate the masses and ages of these rapid rotators on L - R pol and H-R diagrams constructed for non-rotating stars by tracking their non-rotating equivalents. The unexpected fast rotation of the evolved sub-giant _Â Cas offers a unique test of the stellar core-envelope coupling, revealing quite efficient coupling over the past ~0.5Â Gyr. Lastly, we summarize all our interferometric determinations of the gravity darkening coefficient for rapid rotators, finding that none match the expectations from the widely used von Zeipel gravity darkening laws. Since the conditions of the von Zeipel law are known to be violated for rapidly rotating stars, we recommend using the empirically derived _Â = 0.19 for such stars with radiation-dominated envelopes. Furthermore, we note that no paradigm exists for self-consistently modeling heavily gravity-darkened stars that show hot radiative poles with cool convective equators.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90751/1/0004-637X_732_2_68.pd
Resolving Vega and the inclination controversy with CHARA/MIRC
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Optical and infrared interferometers definitively established that the photometric standard Vega (=α Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u, v)-coverage, we find that Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and are also consistent with the possible rotational period of ~0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10 – 0.15 M ☉ and an age 700–75 + 150 Myr, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z = 0.006+0.003 – 0.002).The CHARA Array is
currently funded by the National Science Foundation through
AST-1211929 and by the Georgia State University. Funding for
the MIRC combiner came from the University of Michigan, and
observations were supported through NSF grants AST-0352723,
AST-0707927, and AST-1108963. S.T.R. acknowledges partial
support from NASA grant NNH09AK731. This research
has made use of the SIMBAD database, operated at CDS,
Strasbourg, France, and NASA’s Astrophysics Data System
(ADS) Bibliographic Services
- …