1,935 research outputs found

    Conformal Properties of Charges in Scalar-Tensor Gravities

    Get PDF
    We study the behavior under conformal transformations of energy and other charges in generic scalar-tensor models. This enables us to conclude that the ADM/AD masses are invariant under field redefinitions mixing metric and scalar despite the permitted slow asymptotic falloff of massless scalars.Comment: 4 page

    New Energy Definition for Higher Curvature Gravities

    Get PDF
    We propose a novel but natural definition of conserved quantities for gravity models quadratic and higher in curvature. Based on the spatial asymptotics of curvature rather than of metric, it avoids the GR energy machinery's more egregious problems--such as zero energy "theorems" and failure in flat backgrounds -- in this fourth-derivative realm. In D>4, the present expression indeed correctly discriminates between second derivative Gauss-Bonnet and generic, fourth derivative, actions.Comment: 3 pages, Typos fixe

    Massive, Topologically Massive, Models

    Get PDF
    In three dimensions, there are two distinct mass-generating mechanisms for gauge fields: adding the usual Proca/Pauli-Fierz, or the more esoteric Chern-Simons (CS), terms. Here we analyze the three-term models where both types are present, and their various limits. Surprisingly, in the tensor case, these seemingly innocuous systems are physically unacceptable. If the sign of the Einstein term is ``wrong'' as is in fact required in the CS case, then the excitation masses are always complex; with the usual sign, there is a (known) region of the two mass parameters where reality is restored, but instead we show that a ghost problem arises, while, for the ``pure mass'' two-term system without an Einstein action, complex masses are unavoidable. This contrasts with the smooth behavior of the corresponding vector models. Separately, we show that the ``partial masslessness'' exhibited by (plain) massive spin-2 models in de Sitter backgrounds is formally shared by the three-term system: it also enjoys a reduced local gauge invariance when this mass parameter is tuned to the cosmological constant.Comment: 7 pages, typos corrected, reference adde

    A Versatile Active Block: DXCCCII and Tunable Applications

    Get PDF
    The study describes dual-X controlled current conveyor (DXCCCII) as a versatile active block and its application to inductance simulators for testing. Moreover, the high pass filter application using with DXCCCII based inductance simulator and oscillator with flexible tunable oscillation frequency have been presented and simulated to confirm the theoretical validity. The proposed circuit which has a simple circuit design requires the low-voltage and the DXCCCII can also be tuned in the wide range by the biasing current. The proposed DXCCCII provides a good linearity, high output impedance at Z terminals, and a reasonable current and voltage transfer gain accuracy. The proposed DXCCCII and its applications have been simulated using the CMOS 0.18 µm technology

    Weyl-gauging of Topologically Massive Gravity

    Full text link
    We construct a Weyl-invariant extension of topologically massive gravity which, remarkably, turns out to include topologically massive electrodynamics, with a Proca mass term, conformally coupled to a scalar field. The action has no dimensionful parameters, therefore, the masses are generated via symmetry breaking either radiatively in flat backgrounds or spontaneously in constant curvature backgrounds. The broken phase of the theory, generically, has a single massive spin-2 and a massive spin-1 excitation. Chiral gravity in asymptotically anti-de Sitter spacetimes does not arise as a low energy theory, while chiral gravity in de Sitter spacetime is not ruled out.Comment: 10 pages, minor changes made, version to appear in Phys. Rev.

    The Demand for Medical Care in Urban China

    Get PDF
    This is the first paper to investigate the determinants of the demand for medical care in the People's Republic of China. It uses a data set that consists of detailed characteristics of 6407 urban households, a continuous measure of health care spending, and price. A two-part model and a discrete factor model are used in the estimation. Household characteristics and work conditions impact the demand for medical care. Income elasticity is around 0.3, indicating medical care is a necessity. Medical care demand is price inelastic, and price elasticity is larger in absolute value for poorer households.

    Newtonian Counterparts of Spin 2 Massless Discontinuities

    Get PDF
    Massive spin 2 theories in flat or cosmological (Λ≠0\Lambda \ne 0) backgrounds are subject to discontinuities as the masses tend to zero. We show and explain physically why their Newtonian limits do not inherit this behaviour. On the other hand, conventional ``Newtonian cosmology'', where Λ\Lambda is a constant source of the potential, displays discontinuities: e.g. for any finite range, Λ\Lambda can be totally removed.Comment: 6 pages, amplifies the ``Newtonian cosmology'' analysis. To appear as a Class. Quantum Grav. Lette

    Spherically symmetric solutions of Einstein + non-polynomial gravities

    Full text link
    We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (first) derivative order of the Einstein equations in Schwarzschild gauge. Generically, the solutions exhibit both horizons and a singularity at the origin, except for one model that forbids spherical symmetry altogether. Extensions to arbitrary dimension with a cosmological constant, Maxwell source and Gauss-Bonnet terms are also considered.Comment: 6 pages, no figures, REVTeX

    Shortcuts to Spherically Symmetric Solutions: A Cautionary Note

    Get PDF
    Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz invalidates it, as illustrated by the incorrect solutions of [1].Comment: 2 pages. Amplified derivation, accepted for publication in Class Quant Gra

    Shortcuts to high symmetry solutions in gravitational theories

    Get PDF
    We apply the Weyl method, as sanctioned by Palais' symmetric criticality theorems, to obtain those -highly symmetric -geometries amenable to explicit solution, in generic gravitational models and dimension. The technique consists of judiciously violating the rules of variational principles by inserting highly symmetric, and seemingly gauge fixed, metrics into the action, then varying it directly to arrive at a small number of transparent, indexless, field equations. Illustrations include spherically and axially symmetric solutions in a wide range of models beyond D=4 Einstein theory; already at D=4, novel results emerge such as exclusion of Schwarzschild solutions in cubic curvature models and restrictions on ``independent'' integration parameters in quadratic ones. Another application of Weyl's method is an easy derivation of Birkhoff's theorem in systems with only tensor modes. Other uses are also suggested.Comment: 10 page
    • …
    corecore