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Abstract

Spherically symmetric solutions of generic gravitational models are op-
timally, and legitimately, obtained by expressing the action in terms
of the surviving metric components. This shortcut is not to be over-
done, however: a one-function ansatz invalidates it, as illustrated by
the incorrect solutions of [TJ.

It is well-understood since the original work of Palais [2] that the field
equations describing highly symmetric geometries can be obtained legiti-
mately by using only candidate metrics endowed with those symmetries.
This simplifying procedure does require some care, however, as illustrated
in [3]. In particular, one must retain enough dependent variables in order to
probe the required range of variation of the action. Specifically, spherically
symmetric metrics have two independent components (g,,, goo) in the nat-
ural Schwarzschild gauge. While the field equations of, say Einstein gravity
imply googrr = — 1, assuming this a priori in the Lagrangian density turns
it into a total divergence, with similar inconsistencies in other actions. This
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is just a special case of the generic ! invalidity of “going on half-shell” in
obtaining Euler-Lagrange equations. Actually, there is a deep problem []
associated with even the Weyl 2-function ansatz — its inability to reproduce
Birkhoff’s theorem; given the more immediate difficulties addressed below,
we drop it here.

An example of this error is a recent work [1] in this Journal claiming
1-function spherical solutions to Born-Infeld gravity (BIG) models [5]. It is
not even necessary to delve into its numerical calculations; the assertion that
its single field equation is solved exactly by any monomials v , n = 0,1, 2, 3,
and that these solutions also solve the full field equations is already false:
as is trivially checked, 7> does not solve the original field equations. Neither
r? nor 7! are solutions to even the single field equation (14) because an
arbitrarily discarded denominator vanishes there. Only 72 , which represents
flat space and does solve BIG, is a solution to both the 1-function and 2-
function field equations (but only once the incorrect action (11) is properly
rewritten 2).

We need only conclude with the following immediate disproof: BIG con-
tains General Relativity as the first term in its expansion [B]

- /d4x (\/m— \/—_g) S % (/d‘lx\/—_gR) o). (1)

But we have just seen that the ansatz of [I] misses this term altogether,
since it becomes a total divergence (as demonstrated in [3]).
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