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Abstract

We apply the Weyl method, as sanctioned by Palais’ symmetric criticality theorems, to

obtain those -highly symmetric -geometries amenable to explicit solution, in generic gravi-

tational models and dimension. The technique consists of judiciously violating the rules of

variational principles by inserting highly symmetric, and seemingly gauge fixed, metrics into

the action, then varying it directly to arrive at a small number of transparent, indexless, field

equations. Illustrations include spherically and axially symmetric solutions in a wide range

of models beyond D = 4 Einstein theory; already at D = 4, novel results emerge such as

exclusion of Schwarzschild solutions in cubic curvature models and restrictions on “indepen-

dent” integration parameters in quadratic ones. Another application of Weyl’s method is an

easy derivation of Birkhoff’s theorem in systems with only tensor modes. Other uses are also

suggested.
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1 Introduction

In his classic monograph on general relativity [1], Weyl derived the Schwarzschild metric by a very

elegant method leading to just two scalar field equations instead of the usual tensorial set. The

simplification was achieved by choosing the input metric not only to exhibit spherical symmetry

and a priori time-independence but also to select a particular gauge, Schwarzschild coordinates;

in our (slightly different) parametrization,

ds2 = −a(r)b(r)2 dt2 +
dr2

a(r)
+ r2dΩ2, (1)

where dΩ2 is the 2-sphere element, the Einstein action simply takes the form

I =

∫

d4x
√−gR →

∫

∞

0

dr r(a − 1)b′. (2)

The two Euler-Lagrange equations obtained by varying the dependent variables (a, b) in (2) are

not only of first derivative order, but trivially integrable to the correct metric, a = 1 − c1/r,

b = c2. It did not escape subsequent readers that this procedure seems to violate all the tenets

of variational principles: It inter-compares solely static 3, spherically symmetric geometries and

even specifies the gauge! The correctness of the results, however, suggests that that there must

be something to this procedure. Indeed, a mere fifty years later, a mathematical justification (

and equally important, its limitations) was given by the symmetric criticality theorems of Palais

[2]. We will not expound them here. 4

Surprisingly, there has been very little application of this streamlined approach to GR, let

alone to more complicated gravitational models involving higher curvature powers and generic

dimension. Our aim here is the modest one of advertising the virtues of this technique through

concrete generation of spherically and axially symmetric solutions in a variety of models, including

matter and various string-generated corrections to Einstein theory such as the conformal Weyl

action in D = 4, higher powers of curvature , or Gauss-Bonnet terms in D > 4. We mention

3This assumption is also tacit and unjustified in many textbooks.
4For a recent discussion in the framework of GR, see [3].
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several novel results: pure R2 gravity in D = 4 allows either Schwarzschild-deSitter (SdS) or

Reissner-Nordstrom (RN) solutions but not both; the actions cubic in the Weyl tensor plus any

lower power of curvature at D = 4 do not permit the Schwarzschild metric; in the four dimensional

R2
µνρσ model, the only solution of the form −g00 = grr is SdS.

We hope that further novel applications will be found. One domain is obviously that of

‘brane’ metrics. Another would exploit the fact that, under precisely defined circumstances, it is

possible to generate correct solutions-along with metrics that are not correct-despite even more

egregious violations of the ground rules; since it is easy to screen out non-solutions, one may

hope to thereby obtain as yet unknown geometries in more complicated models. Separately, we

will obtain the Birkhoff theorem, for models without scalar or vector modes, as another type of

application . Also, depending how one chooses to parametrize the metric, one might generate

solutions in other coordinates, although care is required here. More generally, we caution that

the fine print must always be read with care.

2 Spherical Symmetry

The most general spherically symmetric metric in dimension D and Schwarzschild gauge is

ds2 = −a(r, t)b(r, t)2dt2 +
dr2

a(r, t)
+ r2dΩD−2, (3)

where dΩD−2 is the D − 2 sphere element and the two functions (a, b) depend on (r, t) a priori.

This “gauge” is well-known to be very special in that it is not so much a gauge choice but rather

a natural expression of the symmetry orbits [2]. We have already noted its advantage in GR of

reducing the derivative order of the action (2). 5

Let us start with the most elementary example of cosmological GR,

I =

∫

dDx
√−g(R + Λ). (4)

5An example of illegal gauge choice is to further reduce the (r, t) 2-space to a single function, say to conformally
flat form with t-independence. We know that the Schwarzschild metric cannot be so expressed.
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The scalar curvature and volume form are respectively

R = a′′ +
2ab′′

b
+

3a′b′

b
+ 2(D − 2)

1

r
(a′ +

ab′

b
) + (D − 2)(D − 3)

1

r2
(a − 1) (5)

+
1

a2b2
(ä − 2

ȧ2

a
− ȧḃ

b
),

√−g = brD−2.

The time derivatives all drop out in the action (4 )

I = (D − 2)

∫

∞

0

dr rD−3(a − 1 − Λr2

D − 2
)b′; (6)

absence of any time derivatives in the integrated form is Birkhoff’s theorem. It is now also obvious

that the solution of (6) is SdS,

a(r) = 1 +
c1

rD−3
+

Λ

D − 2
r2, b(r) = c2 (7)

for D > 3, and the conical SdS

a = c1 + Λr2, b = c2, (8)

for D = 3. This agrees of course with the known results [4, 5].

We can also add a Maxwell term, −1

4

∫ √−gF 2
µν , to the Einstein action to obtain the RN

solution. A spherically symmetric and static (Birkhoff’s theorem is also immediate here) gauge

field can be written as A = A0(r)dt, which then leads to the reduced cosmological Einstein-

Maxwell system:

I =

∫

∞

0

dr

{

rD−3(a − 1 − Λr2

D − 2
)b′ − 1

2b
rD−2A′

0

2

}

. (9)

Varying the action with respect to A0, one obtains

A0 =
b(r)c3

rD−3
. (10)

The remaining equations follow easily and lead to RNdS:

b(r) = c2, a(r) = 1 +
c1

rD−3
+

Λ

D − 2
r2 +

q2

r2D−6
. (11)
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Next, we run through some other gravitational models of current interest.

I Birkhoff Theorem in Einstein-Gauss-Bonnet (EGB) theory

The EGB model frequently arises in the gravity and string theory literature. Its spherically

symmetric solutions were given in [6] using in fact the Weyl trick, but assuming t-independence

from the outset. Here, we derive the latter. The action

I =

∫

dDx
√−g

{

R + α(R2 − 4R2

µν + R2

µνσρ)
}

(12)

reduces to the following simple form for the metric (3)

I =

∫

∞

0

drrD−3(a − 1)b′
{

1 + α̃r−2(a − 1)
}

, (13)

where α̃ vanishes for D = 4 and otherwise is proportional to α. As in the case of pure Einstein

theory, the action indeed has no time derivatives. The explicit solution of [6]

a(r) = 1 +
r2

2α̃
± r2

2α̃

√

1 +
c1α̃

rD−1
, (14)

then follows directly. To complete our discussion of EGB theory, let us add the Maxwell term,

I =

∫

∞

0

dr

{

rD−3(a − 1)b′[1 + α̃r−2(a − 1)] − 1

2b
rD−2A′

0

2

}

. (15)

Then the “RNEGB” solution reads :

b(r) = c, a(r) = 1 +
r2

2α̃
± r2

2α̃

√

1 +
c1α̃

rD−1
+

q2α̃

r2D−8
. (16)

II C2 and C3 models

Explicit spherically symmetric solutions of conformal, C2, gravity were given in [7, 8].

Birkhoff’s theorem was also demonstrated in [7]. Here, we show how the Weyl trick provides

us with a shortcut to the explicit solution. Dropping time dependence for simplicity, the static

metric given in (1) reduces the action

I =

∫

d4x
√−gCµνρσCµνρσ (17)
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to the 1-dimensional form

I =

∫

∞

0

dr
1

br2

{

r2ba′′ + 3r2a′b′ + 2r2ab′′ − 2rba′ − 2arb′ − 2b + 2ba
}2

. (18)

After varying (18) with respect to (a, b), one can set b = c and integrate one of the two equations

to obtain

a(r) = c1 +
c2

r
+ c3r + c4r

2, (19)

The remaining equation then imposes the following condition on the integration constants,

1 − c2

1 + 3c2c3 = 0. (20)

The above solution seemingly accommodates both the Schwarzschild and the linear term c3r:

However, if both were present simultaneously, the condition (20) would imply that c1 6= 1,

namely a conical singularity (and not merely a horizon). Thus, one must set c1 = 1 to avoid

the singularity and impose the stronger version of the condition (20), thereby excluding either

the linear potential term or 1/r.

Let us next sketch the spherically symmetric solutions of the cubic conformal curvature

model,

I =

∫

d4x
√−gCµνρσCµν

αβCαβρσ, (21)

which, for the metric (1), reduces to

I =

∫

∞

0

dr
1

b2r4

{

r2ba′′ + 3r2a′b′ + 2r2ab′′ − 2rba′ − 2arb′ − 2b + 2ba
}3

. (22)

Once again, after varying the action with respect to (a, b) and setting 6 b = c, one can show that

there can be no M/r term in the metric: The Schwarzschild metric is not a solution. Instead, one

can see that a(r) = 1 + c1r + c2r
2, solves the equations: It yields, as expected, the most general

conformally flat metric (in the spherical coordinates). To our knowledge, this is the simplest

6In Einstein theory, b = c is a consequence of the field equations. Here and below, we select this class without
checking whether it is still forced. In either case, the metrics so obtained are still solutions of course.
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gravitational model in D = 4 that actually excludes Schwarzschild horizons, an exclusion that

also extends to the generic R+R2+C3 cases as well, since the other terms vanish for Schwarzschild

metrics.

III Solutions of pure R2 theory

Let us consider the action

I =

∫

dDx
√−gR2 (23)

→
∫

drrD−2b

{

a′′ +
2ab′′

b
+

3a′b′

b
+ 2(D − 2)

1

r
(a′ +

ab′

b
) + (D − 2)(D − 3)

1

r2
(a − 1)

}2

.

D = 4 is special, since the action is scale invariant and allows the following solution

a(r) = 1 +
2M

r
+

q2

r2
+ Λr2, b(r) = c, (24)

with the interesting constraint

q2Λ = 0. (25)

Therefore, as in C2 theory, there is a nice complementarity here: Either a charge or a cosmological

term can be present, but not both.

For generic D, the equations derived from (24) allow only the RN solution

a(r) = 1 +
2M

r
+

q2

r2D−6
, (26)

since scale invariance is lost in D 6= 4.

Let us go back to D = 4 and study another ’special’ quadratic model in D = 4.

I =

∫

d4x
√−gR̃µνR̃

µν . (27)

where R̃µν = Rµν − 1

4
gµνR. What makes this model unique among the quadratic ones is that it

is the only one whose solutions have vanishing energy [9]. [ From the Gauss-Bonnet identity, this

model (27) is equivalent to
∫

d4x
√−gRµναβRµναβ theory. Beyond D = 4, the ‘traceless’ theory
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∫

d4x
√−g

{

Rµν − 1

D
gµνR

}2
keeps its ‘zero-energy’ property, but

∫

d4x
√−gR2

µναβ does not.] The

reduced action, not necessarily in the simplest form, is

I =

∫

∞

0

dr { 4b

r2
(a − 1)2 +

r2

b
(2ab′′ + 3a′b′)2 + 4r2aa′′b′′ (28)

+6r2a′b′a′′ + r2ba′′2 + 8
a2b′2

b
+ 8aa′b′ + 4ba′2}.

After varying with respect to (a, b), and setting b = c, one obtains two nonlinear equations

satisfied by a, one of which is easily integrable with 4 integration constants. But the other

equation requires 2 of those constants to be zero and one is left with only SdS. While the fact

that SdS is a solution of the model (27) is also easy to see without using the Weyl trick, the

latter allowed us to show that among the solutions of the type −g00 = grr, SdS is the only one!

One could of course remove this restriction and try to solve the two highly non-linear equations

in (a, b). We do not know any exact solutions of this kind 7 but the reduced action (29) is a good

starting point in looking for such geometries.

3 Axial Symmetry

As the history of solutions in GR shows, things rapidly become more complicated with decreasing

Killing directions : In D = 4, the evolution from Schwarzschild to Kerr took some 45 years. For

now, we just consider the simpler D = 3 case, to obtain its (well-known) Kerr [4] or AdS Kerr [5]

solutions. Here we take the time-dependent axially symmetric metric to be

ds2 = −a(r, t)dt2 + b(r, t)dr2 + 2k(r, t) dt dφ + h(r, t)dφ2. (29)

Birkhoff’s theorem again easily emerges in this “spin 1” world -there are no explicit time deriva-

tives in the actions, even though the Ricci tensor and scalar have many time dependent terms.

As a result, the action, with a cosmological constant, reduces to

I =

∫

∞

0

dr

{

a′h′ + k′2

√
abh + bk2

+ Λ
√

abh + bk2

}

(30)

7Approximate solutions were found (not via Weyl trick) for R + αR2

µναβ in [10]

8



up to boundary terms

∆I =

∫

drB′ B = − (fh + k2)′√
abh + bk2

. (31)

We again fix the Schwarzschild gauge by setting h(r) = r2. Then, varying the three remaining

functions yields the solution

k = −J, a(r) = −c − Λr2 b−1(r) = −c − Λr2 +
J2

4r2
. (32)

The Λ = 0 limit is the extension ( in slightly different coordinates ) of the original massless

spinning metric of [4], to include mass; if we keep Λ, we get the BTZ metric [5].

4 Summary

We have attempted to highlight the Weyl method, within its legitimate scope, as a useful tool

both for probing general properties such as Birkhoff’s theorem and obtaining explicit solutions

in the highly symmetric cases where they are plausibly available in general gravity models. Our

explicit examples were primarily spherically, but also axially ,symmetric worlds ; the latter were

also easily shown to exhibit time-independence. Other, as yet unexplored, possible applications

include brane-metrics, and non-abelian gauge theories.

We thank R. S. Palais for patient discussions of his work and N. Wyllard for algebraic

assistance. This research was supported by NSF Grant 99-73935
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