115 research outputs found

    Did tool-use evolve with enhanced physical cognitive abilities?

    Get PDF
    The use and manufacture of tools have been considered to be cognitively demanding and thus a possible driving factor in the evolution of intelligence. In this study, we tested the hypothesis that enhanced physical cognitive abilities evolved in conjunction with the use of tools, by comparing the performance of naturally tool-using and non-tool-using species in a suite of physical and general learning tasks. We predicted that the habitually tool-using species, New Caledonian crows and GalĂĄpagos woodpecker finches, should outperform their non-tool-using relatives, the small tree finches and the carrion crows in a physical problem but not in general learning tasks. We only found a divergence in the predicted direction for corvids. That only one of our comparisons supports the predictions under this hypothesis might be attributable to different complexities of tool-use in the two tool-using species. A critical evaluation is offered of the conceptual and methodological problems inherent in comparative studies on tool-related cognitive abilities

    Discovery of species-wide tool use in the Hawaiian crow

    Get PDF
    Funding from the Biotechnology and Biological Sciences Research Council, UK (BBSRC; grant BB/G023913/2 to C.R., and studentship to B.C.K.), the University of St Andrews (C.R.), JASSO (S.S.), and the Royal Society of London (M.B.M.). Funding for thecaptive ‘Alala propagation programme was provided by the U.S. Fish and Wildlife Service, Hawai‘i Division of Forestry and Wildlife, Moore Family Foundation, Marisla Foundation, several anonymous donors, and San Diego Zoo Global.Only a handful of bird species are known to use foraging tools in the wild1. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills2, 3. Despite considerable speculation, the evolutionary origins of this species’ remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons4. Here we show that another tropical corvid, the ‘Alalā (C. hawaiiensis; Hawaiian crow), is a highly dexterous tool user. Although the ‘Alalā became extinct in the wild in the early 2000s, and currently survives only in captivity5, at least two lines of evidence suggest that tool use is part of the species’ natural behavioural repertoire: juveniles develop functional tool use without training, or social input from adults; and proficient tool use is a species-wide capacity. ‘Alalā and New Caledonian crows evolved in similar environments on remote tropical islands, yet are only distantly related6, suggesting that their technical abilities arose convergently. This supports the idea that avian foraging tool use is facilitated by ecological conditions typical of islands, such as reduced competition for embedded prey and low predation risk4, 7. Our discovery creates exciting opportunities for comparative research on multiple tool-using and non-tool-using corvid species. Such work will in turn pave the way for replicated cross-taxonomic comparisons with the primate lineage, enabling valuable insights into the evolutionary origins of tool-using behaviour.PostprintPeer reviewe

    Tool-Use Training in a Species of Rodent: The Emergence of an Optimal Motor Strategy and Functional Understanding

    Get PDF
    Tool use is defined as the manipulation of an inanimate object to change the position or form of a separate object. The expansion of cognitive niches and tool-use capabilities probably stimulated each other in hominid evolution. To understand the causes of cognitive expansion in humans, we need to know the behavioral and neural basis of tool use. Although a wide range of animals exhibit tool use in nature, most studies have focused on primates and birds on behavioral or psychological levels and did not directly address questions of which neural modifications contributed to the emergence of tool use. To investigate such questions, an animal model suitable for cellular and molecular manipulations is needed.) to use a rake-like tool with their forelimbs to retrieve otherwise out-of-reach rewards. Eventually, they mastered effective use of the tool, moving it in an elegant trajectory. After the degus were well trained, probe tests that examined whether they showed functional understanding of the tool were performed. Degus did not hesitate to use tools of different size, colors, and shapes, but were reluctant to use the tool with a raised nonfunctional blade. Thus, degus understood the functional and physical properties of the tool after extensive training.Our findings suggest that tool use is not a specific faculty resulting from higher intelligence, but is a specific combination of more general cognitive faculties. Studying the brains and behaviors of trained rodents can provide insights into how higher cognitive functions might be broken down into more general faculties, and also what cellular and molecular mechanisms are involved in the emergence of such cognitive functions

    The repeatability of cognitive performance:A meta-analysis

    Get PDF
    This is the author accepted manuscript. The final version is available from The Royal Society via the DOI in this record.Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.PKYC is supported by Japan Society for the Promotion of Science (PE1801); JOvH was funded by an ERC consolidator grant (616474). MC and this research was supported by a grant from the Human Frontier Science Program to ASC and JM-F (RGP0006/2015)

    Evolutionary Dead End in the GalĂĄpagos: Divergence of Sexual Signals in the Rarest of Darwin's Finches

    Get PDF
    Understanding the mechanisms underlying speciation remains a challenge in evolutionary biology. The adaptive radiation of Darwin's finches is a prime example of species formation, and their study has revealed many important insights into evolutionary processes. Here, we report striking differences in mating signals (songs), morphology and genetics between the two remnant populations of Darwin's mangrove finch Camarhynchus heliobates, one of the rarest species in the world. We also show that territorial males exhibited strong discrimination of sexual signals by locality: in response to foreign songs, males responded weaker than to songs from their own population. Female responses were infrequent and weak but gave approximately similar results. Our findings not only suggest speciation in the mangrove finch, thereby providing strong support for the central role of sexual signals during speciation, but they have also implications for the conservation of this iconic bird. If speciation is complete, the eastern species will face imminent extinction, because it has a population size of only 5–10 individuals

    What You See Is What You Get? Exclusion Performances in Ravens and Keas

    Get PDF
    BACKGROUND:Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded) and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied. METHODOLOGY/PRINCIPAL FINDINGS:We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently. CONCLUSION:To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds
    • 

    corecore