73,385 research outputs found

    Spontaneous Dissociation of 85Rb Feshbach Molecules

    Get PDF
    The spontaneous dissociation of 85Rb dimers in the highest lying vibrational level has been observed in the vicinity of the Feshbach resonance which was used to produce them. The molecular lifetime shows a strong dependence on magnetic field, varying by three orders of magnitude between 155.5 G and 162.2 G. Our measurements are in good agreement with theoretical predictions in which molecular dissociation is driven by inelastic spin relaxation. Molecule lifetimes of tens of milliseconds can be achieved close to resonance.Comment: 4 pages, 3 figure

    Constraining the Surface Inhomogeneity and Settling Times of Metals on Accreting White Dwarfs

    Get PDF
    Due to the short settling times of metals in DA white dwarf atmospheres, any white dwarfs with photospheric metals must be actively accreting. It is therefore natural to expect that the metals may not be deposited uniformly on the surface of the star. We present calculations showing how the temperature variations associated with white dwarf pulsations lead to an observable diagnostic of the surface metal distribution, and we show what constraints current data sets are able to provide. We also investigate the effect that time-variable accretion has on the metal abundances of different species, and we show how this can lead to constraints on the gravitational settling times.Comment: 4 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters, updated reference

    A "Cellular Neuronal" Approach to Optimization Problems

    Full text link
    The Hopfield-Tank (1985) recurrent neural network architecture for the Traveling Salesman Problem is generalized to a fully interconnected "cellular" neural network of regular oscillators. Tours are defined by synchronization patterns, allowing the simultaneous representation of all cyclic permutations of a given tour. The network converges to local optima some of which correspond to shortest-distance tours, as can be shown analytically in a stationary phase approximation. Simulated annealing is required for global optimization, but the stochastic element might be replaced by chaotic intermittency in a further generalization of the architecture to a network of chaotic oscillators.Comment: -2nd revised version submitted to Chaos (original version submitted 6/07

    Mars: Seasonally variable radar reflectivity

    Get PDF
    Since reflectivity is a quantity characteristic of a given target at a particular geometry, the same (temporally unchanging) target examined by radar on different occasions should have the same reflectivity. Zisk and Mouginis-Mark noted that the average reflectivities in the Goldstone Mars data increased as the planet's S hemisphere passed from the late spring into early summer. The same data set was re-examined and the presence of the phenomenon of the apparent seasonal variability of radar reflectivity was confirmed. Two objections to these findings are addressed: (1) reflectivity variations may be present in the Goldstone Mars data as a result of an instrument/calibration error; and (2) the variations were introduced into the analysis through comparing reflectivities from two incompatible subsets of the data

    Nucleation of quark matter in neutron stars cores

    Get PDF
    We consider the general conditions of quark droplets formation in high density neutron matter. The growth of the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the medium it takes place. The conditions for quark bubble formation are analyzed within the frameworks of both dissipative and non-dissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and of the microscopic parameters of the quark nuclei. As an application of the obtained formalism we analyze the first order phase transition from neutron matter to quark matter in rapidly rotating neutron stars cores, triggered by the gravitational energy released during the spinning down of the neutron star. The endothermic conversion process, via gravitational energy absorption, could take place, in a very short time interval, of the order of few tens seconds, in a class of dense compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap

    A ratio model of perceived speed in the human visual system

    Get PDF
    The perceived speed of moving images changes over time. Prolonged viewing of a pattern (adaptation) leads to an exponential decrease in its perceived speed. Similarly, responses of neurones tuned to motion reduce exponentially over time. It is tempting to link these phenomena. However, under certain conditions, perceived speed increases after adaptation and the time course of these perceptual effects varies widely. We propose a model that comprises two temporally tuned mechanisms whose sensitivities reduce exponentially over time. Perceived speed is taken as the ratio of these filters' outputs. The model captures increases and decreases in perceived speed following adaptation and describes our data well with just four free parameters. Whilst the model captures perceptual time courses that vary widely, parameter estimates for the time constants of the underlying filters are in good agreement with estimates of the time course of adaptation of direction selective neurones in the mammalian visual system

    Short Duration Gamma-Ray Bursts with Extended Emission from Proto-Magnetar Spin-Down

    Full text link
    Evidence is growing for a class of gamma-ray bursts (GRBs) characterized by an initial ~0.1-1 s spike of hard radiation followed, after a ~3-10 s lull in emission, by a softer period of extended emission lasting ~10-100 s. In a few well-studied cases, these ``short GRBs with extended emission'' show no evidence for a bright associated supernova (SN). We propose that these events are produced by the formation and early evolution of a highly magnetized, rapidly rotating neutron star (a ``proto-magnetar'') which is formed from the accretion-induced collapse (AIC) of a white dwarf (WD), the merger and collapse of a WD-WD binary, or, perhaps, the merger of a double neutron star binary. The initial emission spike is powered by accretion onto the proto-magnetar from a small disk that is formed during the AIC or merger event. The extended emission is produced by a relativistic wind that extracts the rotational energy of the proto-magnetar on a timescale ~10-100 s. The ~3-10 s delay between the prompt and extended emission is the time required for the newly-formed proto-magnetar to cool sufficiently that the neutrino-heated wind from its surface becomes ultra-relativistic. Because a proto-magnetar ejects little or no Ni56 (< 1e-3 M_sun), these events should not produce a bright SN-like transient. We model the extended emission from GRB060614 using spin-down calculations of a cooling proto-magnetar, finding reasonable agreement with observations for a magnetar with an initial rotation period of ~1 ms and a surface dipole field of ~3e15 G. If GRBs are indeed produced by AIC or WD-WD mergers, they should occur within a mixture of both early and late-type galaxies and should not produce strong gravitational wave emission. An additional consequence of our model is the existence of X-ray flashes unaccompanied by a bright SN.Comment: 6 pages, 2 figures; accepted to MNRA

    Polo like kinase 2 tumour suppressor and cancer biomarker: new perspectives on drug sensitivity/resistance in ovarian cancer

    Get PDF
    The polo-like kinase PLK2 has recently been identified as a potential theranostic marker in the management of chemotherapy sensitive cancers. The methylation status of the PLK2 CpG island varies with sensitivity to paclitaxel and platinum in ovarian cancer cell lines. Importantly, extrapolation of these in vitro data to the clinical setting confirms that the methylation status of the PLK2 CpG island predicts outcomes in patients treated with carboplatin and paclitaxel chemotherapy. A second cell cycle regulator, p57Kip2, is also subject to epigenetic silencing in carboplatin resistance in vitro and in vivo, emphasising that cell cycle regulators are important determinants of sensitivity to chemotherapeutic agents and providing insights into the phenomenon of collateral drug sensitivity in oncology. Understanding the mechanistic basis and identification of robust biomarkers to predict collateral sensitivity may inform optimal use of chemotherapy in patients receiving multiple lines of treatment
    • …
    corecore