8,715 research outputs found

    Results from tests, with van-mounted sensor, of magnetic leader cable for aircraft guidance during roll-out and turnoff

    Get PDF
    Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft

    Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field

    Full text link
    We generalize the Fredrickson-Helfand theory of the microphase separation in symmetric diblock copolymer melts by taking into account the influence of a time-independent homogeneous electric field on the composition fluctuations within the self-consistent Hartree approximation. We predict that electric fields suppress composition fluctuations, and consequently weaken the first-order transition. In the presence of an electric field the critical temperature of the order-disorder transition is shifted towards its mean-field value. The collective structure factor in the disordered phase becomes anisotropic in the presence of the electric field. Fluctuational modulations of the order parameter along the field direction are strongest suppressed. The latter is in accordance with the parallel orientation of the lamellae in the ordered state.Comment: 16 page

    Are dwarf spheroidal galaxies dark matter dominated or remnants of disrupted larger satellite galaxies? -- A possible test

    Get PDF
    The failure of standard cosmolocical models in accounting for the statistics of dwarf satellites and the rotation curve of gas-rich dwarf galaxies in detail has led us to examine whether earlier non-equilibrium models of dwarf spheroidal satellites without any dark matter should be reconsidered in more detail. Such models can explain the high dispersion of the dwarf spheroids by the projection of disrupted tidal debris. We show in the case of Milky Way satellites, that these models predict a significant spread in the apparent magnitude of horizontal branch stars which is correlated with sky position and velocity. In particular, the models produce a strong correlation of radial velocity with the long axis of the dwarf. Current data do not set strong enough constraints on the models, but we suggest that photometric and spectroscopic surveys of extra-tidal stars of nearby dwarf spheroids in the Milky Way and Andromeda can falsify these models without dark matter.Comment: 7 pages, 5 figures, accepted for publication in Ap

    A photometric and astrometric investigation of the brown dwarfs in Blanco 1

    Full text link
    We present the results of a photometric and astrometric study of the low mass stellar and substellar population of the young open cluster Blanco 1. We have exploited J band data, obtained recently with the Wide Field Camera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), and 10 year old I and z band optical imaging from CFH12k and Canada France Hawaii Telescope (CFHT), to identify 44 candidate low mass stellar and substellar members, in an area of 2 sq. degrees, on the basis of their colours and proper motions. This sample includes five sources which are newly discovered. We also confirm the lowest mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the cluster mass function to have a slope of alpha=+0.93, assuming it to have a power law form. This is high, but nearly consistent with previous studies of the cluster (to within the errors), and also that of its much better studied northern hemisphere analogue, the Pleiades.Comment: 8 Pages, 5 Figures, 2 Tables and 1 Appendix. Accepted for publication in MNRA

    The Monitor Project: Stellar rotation at 13~Myr: I. A photometric monitoring survey of the young open cluster h~Per

    Full text link
    We aim at constraining the angular momentum evolution of low mass stars by measuring their rotation rates when they begin to evolve freely towards the ZAMS, i.e. after the disk accretion phase has stopped. We conducted a multi-site photometric monitoring of the young open cluster h Persei that has an age of ~13 Myr. The observations were done in the I-band using 4 different telescopes and the variability study is sensitive to periods from less than 0.2 day to 20 days. Rotation periods are derived for 586 candidate cluster members over the mass range 0.4<=M/Msun<=1.4. The rotation period distribution indicates a sligthly higher fraction of fast rotators for the lower mass objects, although the lower and upper envelopes of the rotation period distribution, located respectively at ~0.2-0.3d and ~10d, are remarkably flat over the whole mass range. We combine this period distribution with previous results obtained in younger and older clusters to model the angular momentum evolution of low mass stars during the PMS. The h Per cluster provides the first statistically robust estimate of the rotational period distribution of solar-type and lower mass stars at the end of the PMS accretion phase (>10 Myr). The results are consistent with models that assume significant core-envelope decoupling during the angular momentum evolution to the ZAMS.Comment: 39 pages, 19 figures, light curves in appendix, 1 long tabl

    Discovery of High-Latitude CO in a HI Supershell in NGC 5775

    Full text link
    We report the discovery of very high latitude molecular gas in the edge-on spiral galaxy, NGC 5775. Emission from both the J=1-0 and 2-1 lines of 12CO is detected up to 4.8 kpc away from the mid-plane of the galaxy. NGC 5775 is known to host a number of HI supershells. The association of the molecular gas M(H2,F2) = 3.1x10^7 solar masses reported here with one of the HI supershells (labeled F2) is clear, which suggests that molecular gas may have survived the process which originally formed the supershell. Alternatively, part of the gas could have been formed in situ at high latitude from shock-compression of pre-existing HI gas. The CO J=2-1/J=1-0 line ratio of 0.34+-40% is significantly lower than unity, which suggests that the gas is excited subthermally, with gas density a few times 100 cubic cm. The molecular gas is likely in the form of cloudlets which are confined by magnetic and cosmic rays pressure. The potential energy of the gas at high latitude is found to be 2x10^56 ergs and the total (HI + H2) kinetic energy is 9x10^53 ergs. Based on the energetics of the supershell, we suggest that most of the energy in the supershell is in the form of potential energy and that the supershell is on the verge of falling and returning the gas to the disk of the galaxy.Comment: Accept by ApJL, 4 pages, 3 ps figure
    corecore