We generalize the Fredrickson-Helfand theory of the microphase separation in
symmetric diblock copolymer melts by taking into account the influence of a
time-independent homogeneous electric field on the composition fluctuations
within the self-consistent Hartree approximation. We predict that electric
fields suppress composition fluctuations, and consequently weaken the
first-order transition. In the presence of an electric field the critical
temperature of the order-disorder transition is shifted towards its mean-field
value. The collective structure factor in the disordered phase becomes
anisotropic in the presence of the electric field. Fluctuational modulations of
the order parameter along the field direction are strongest suppressed. The
latter is in accordance with the parallel orientation of the lamellae in the
ordered state.Comment: 16 page