3,061 research outputs found
An ultra melt-resistant hydrogel from food grade carbohydrates
© 2017 The Royal Society of Chemistry. We report a binary hydrogel system made from two food grade biopolymers, agar and methylcellulose (agar-MC), which does not require addition of salt for gelation to occur and has very unusual rheological and thermal properties. It is found that the storage modulus of the agar-MC hydrogel far exceeds those of hydrogels from the individual components. In addition, the agar-MC hydrogel has enhanced mechanical properties over the temperature range 25-85 °C and a maximum storage modulus at 55 °C when the concentration of methylcellulose was 0.75% w/v or higher. This is explained by a sol-gel phase transition of the methylcellulose upon heating as supported by differential scanning calorimetry (DSC) measurements. Above the melting point of agar, the storage modulus of agar-MC hydrogel decreases but is still an elastic hydrogel with mechanical properties dominated by the MC gelation. By varying the mixing ratio of the two polymers, agar and MC, it was possible to engineer a food grade hydrogel of controlled mechanical properties and thermal response. SEM imaging of flash-frozen and freeze-dried samples revealed that the agar-MC hydrogel contains two different types of heterogeneous regions of distinct microstructures. The latter was also tested for its stability towards heat treatment which showed that upon heating to temperatures above 120 °C its structure was retained without melting. The produced highly thermally stable hydrogel shows melt resistance which may find application in high temperature food processing and materials templating
Scaling properties of step bunches induced by sublimation and related mechanisms: A unified perspective
This work provides a ground for a quantitative interpretation of experiments
on step bunching during sublimation of crystals with a pronounced
Ehrlich-Schwoebel (ES) barrier in the regime of weak desorption. A strong step
bunching instability takes place when the kinetic length is larger than the
average distance between the steps on the vicinal surface. In the opposite
limit the instability is weak and step bunching can occur only when the
magnitude of step-step repulsion is small. The central result are power law
relations of the between the width, the height, and the minimum interstep
distance of a bunch. These relations are obtained from a continuum evolution
equation for the surface profile, which is derived from the discrete step
dynamical equations for. The analysis of the continuum equation reveals the
existence of two types of stationary bunch profiles with different scaling
properties. Through a mathematical equivalence on the level of the discrete
step equations as well as on the continuum level, our results carry over to the
problems of step bunching induced by growth with a strong inverse ES effect,
and by electromigration in the attachment/detachment limited regime. Thus our
work provides support for the existence of universality classes of step
bunching instabilities [A. Pimpinelli et al., Phys. Rev. Lett. 88, 206103
(2002)], but some aspects of the universality scenario need to be revised.Comment: 21 pages, 8 figure
Photometric and spectroscopic variability of the FUor star V582 Aurigae
We carried out BVRI CCD photometric observations in the field of V582 Aur
from 2009 August to 2013 February. We acquired high-, medium-, and
low-resolution spectroscopy of V582 Aur during this period. To study the
pre-outburst variability of the target and construct its historical light
curve, we searched for archival observations in photographic plate collections.
Both CCD and photographic observations were analyzed using a sequence of 14
stars in the field of V582 Aur calibrated in BVRI. The pre-outburst
photographic observations of V582 Aur show low-amplitude light variations
typical of T Tauri stars. Archival photographic observations indicate that the
increase in brightness began in late 1984 or early 1985 and the star reached
the maximum level of brightness at 1986 January. The spectral type of V582 Aur
can be defined as G0I with strong P Cyg profiles of H alpha and Na I D lines,
which are typical of FU Orionis objects. Our BVRI photometric observations show
large amplitude variations V~2.8 mag. during the 3.5 year period of
observations. Most of the time, however, the star remains in a state close to
the maximum brightness. The deepest drop in brightness was observed in the
spring of 2012, when the brightness of the star fell to a level close to the
pre-outburst. The multicolor photometric data show a color reversal during the
minimum in brightness, which is typical of UX Ori variables. The corresponding
spectral observations show strong variability in the profiles and intensities
of the spectral lines (especially H alpha), which indicate significant changes
in the accretion rate. On the basis of photometric monitoring performed over
the past three years, the spectral properties of the maximal light, and the
shape of the long-term light curve, we confirm the affiliation of V582 Aur to
the group of FU Orionis objects.Comment: 9 pages, 8 figures, accepted for publication in A&
Step Bunching with Alternation of Structural Parameters
By taking account of the alternation of structural parameters, we study
bunching of impermeable steps induced by drift of adatoms on a vicinal face of
Si(001). With the alternation of diffusion coefficient, the step bunching
occurs irrespective of the direction of the drift if the step distance is
large. Like the bunching of permeable steps, the type of large terraces is
determined by the drift direction. With step-down drift, step bunches grows
faster than those with step-up drift. The ratio of the growth rates is larger
than the ratio of the diffusion coefficients. Evaporation of adatoms, which
does not cause the step bunching, decreases the difference. If only the
alternation of kinetic coefficient is taken into account, the step bunching
occurs with step-down drift. In an early stage, the initial fluctuation of the
step distance determines the type of large terraces, but in a late stage, the
type of large terraces is opposite to the case of alternating diffusion
coefficient.Comment: 8pages, 16 figure
Spatial calibration of a 2D/3D ultrasound using a tracked needle
PURPOSE: Spatial calibration between a 2D/3D ultrasound and a pose tracking system requires a complex and time-consuming procedure. Simplifying this procedure without compromising the calibration accuracy is still a challenging problem. METHOD: We propose a new calibration method for both 2D and 3D ultrasound probes that involves scanning an arbitrary region of a tracked needle in different poses. This approach is easier to perform than most alternative methods that require a precise alignment between US scans and a calibration phantom. RESULTS: Our calibration method provides an average accuracy of 2.49 mm for a 2D US probe with 107 mm scanning depth, and an average accuracy of 2.39 mm for a 3D US with 107 mm scanning depth. CONCLUSION: Our method proposes a unified calibration framework for 2D and 3D probes using the same phantom object, work-flow, and algorithm. Our method significantly improves the accuracy of needle-based methods for 2D US probes as well as extends its use for 3D US probes
Crossover in the scaling of island size and capture zone distributions
Simulations of irreversible growth of extended (fractal and square) islands
with critical island sizes i=1 and 2 are performed in broad ranges of coverage
\theta and diffusion-to-deposition ratios R in order to investigate scaling of
island size and capture zone area distributions (ISD, CZD). Large \theta and
small R lead to a crossover from the CZD predicted by the theory of Pimpinelli
and Einstein (PE), with Gaussian right tail, to CZD with simple exponential
decays. The corresponding ISD also cross over from Gaussian or faster decays to
simple exponential ones. For fractal islands, these features are explained by
changes in the island growth kinetics, from a competition for capture of
diffusing adatoms (PE scaling) to aggregation of adatoms with effectively
irrelevant diffusion, which is characteristic of random sequential adsorption
(RSA) without surface diffusion. This interpretation is confirmed by studying
the crossover with similar CZ areas (of order 100 sites) in a model with
freezing of diffusing adatoms that corresponds to i=0. For square islands,
deviations from PE predictions appear for coverages near \theta=0.2 and are
mainly related to island coalescence. Our results show that the range of
applicability of the PE theory is narrow, thus observing the predicted Gaussian
tail of CZD may be difficult in real systems.Comment: 9 pages, 7 figure
- …
