This work provides a ground for a quantitative interpretation of experiments
on step bunching during sublimation of crystals with a pronounced
Ehrlich-Schwoebel (ES) barrier in the regime of weak desorption. A strong step
bunching instability takes place when the kinetic length is larger than the
average distance between the steps on the vicinal surface. In the opposite
limit the instability is weak and step bunching can occur only when the
magnitude of step-step repulsion is small. The central result are power law
relations of the between the width, the height, and the minimum interstep
distance of a bunch. These relations are obtained from a continuum evolution
equation for the surface profile, which is derived from the discrete step
dynamical equations for. The analysis of the continuum equation reveals the
existence of two types of stationary bunch profiles with different scaling
properties. Through a mathematical equivalence on the level of the discrete
step equations as well as on the continuum level, our results carry over to the
problems of step bunching induced by growth with a strong inverse ES effect,
and by electromigration in the attachment/detachment limited regime. Thus our
work provides support for the existence of universality classes of step
bunching instabilities [A. Pimpinelli et al., Phys. Rev. Lett. 88, 206103
(2002)], but some aspects of the universality scenario need to be revised.Comment: 21 pages, 8 figure