Simulations of irreversible growth of extended (fractal and square) islands
with critical island sizes i=1 and 2 are performed in broad ranges of coverage
\theta and diffusion-to-deposition ratios R in order to investigate scaling of
island size and capture zone area distributions (ISD, CZD). Large \theta and
small R lead to a crossover from the CZD predicted by the theory of Pimpinelli
and Einstein (PE), with Gaussian right tail, to CZD with simple exponential
decays. The corresponding ISD also cross over from Gaussian or faster decays to
simple exponential ones. For fractal islands, these features are explained by
changes in the island growth kinetics, from a competition for capture of
diffusing adatoms (PE scaling) to aggregation of adatoms with effectively
irrelevant diffusion, which is characteristic of random sequential adsorption
(RSA) without surface diffusion. This interpretation is confirmed by studying
the crossover with similar CZ areas (of order 100 sites) in a model with
freezing of diffusing adatoms that corresponds to i=0. For square islands,
deviations from PE predictions appear for coverages near \theta=0.2 and are
mainly related to island coalescence. Our results show that the range of
applicability of the PE theory is narrow, thus observing the predicted Gaussian
tail of CZD may be difficult in real systems.Comment: 9 pages, 7 figure