181 research outputs found

    Salience and default-mode network connectivity during threat and safety processing in older adults.

    Get PDF
    The appropriate assessment of threat and safety is important for decision-making but might be altered in old age due to neurobiological changes. The literature on threat and safety processing in older adults is sparse and it is unclear how healthy ageing affects the brain's functional networks associated with affective processing. We measured skin conductance responses as an indicator of sympathetic arousal and used functional magnetic resonance imaging and independent component analysis to compare young and older adults' functional connectivity in the default mode (DMN) and salience networks (SN) during a threat conditioning and extinction task. While our results provided evidence for differential threat processing in both groups, they also showed that functional connectivity within the SN - but not the DMN - was weaker during threat processing in older compared to young adults. This reduction of within-network connectivity was accompanied by an age-related decrease in low frequency spectral power in the SN and a reduction in inter-network connectivity between the SN and DMN during threat and safety processing. Similarly, we found that skin conductance responses were generally lower in older compared to young adults. Our results are the first to demonstrate age-related changes in brain activation during aversive conditioning and suggest that the ability to adaptively filter affective information is reduced in older adults

    A comparison of older and younger offenders with delusional jealousy

    Full text link
    We sought to determine whether or not there were differences in medical, criminological and legal factors between older and younger offenders with diagnoses of delusional jealousy by undertaking a retrospective case-file search of Australian legal databases. Our results demonstrate that older offenders were more likely to have comorbid dementia whereas younger offenders were more likely to have comorbid substance use and chronic psychotic conditions. A history of domestic violence frequently predated the index offence but we were unable to determine if this was due to psychosis or a pre-existing tendency for violence. Despite a common diagnosis, the older offenders were more likely to be made forensic patients rather than sentenced prisoners when compared with the younger offenders. Consequently, different factors might mediate the pathway to violence in older and younger people suffering from delusional jealousy and could be additional targets for clinical intervention

    Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses.

    Get PDF
    OBJECTIVE: The irritative zone - the area generating epileptic spikes - can be studied non-invasively during the interictal period using Electrical Source Imaging (ESI) and simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI). Although the techniques yield results which may overlap spatially, differences in spatial localization of the irritative zone within the same patient are consistently observed. To investigate this discrepancy, we used Blood Oxygenation Level Dependent (BOLD) functional connectivity measures to examine the underlying relationship between ESI and EEG-fMRI findings. METHODS: Fifteen patients (age 20-54), who underwent presurgical epilepsy investigation, were scanned using a single-session resting-state EEG-fMRI protocol. Structural MRI was used to obtain the electrode localisation of a high-density 64-channel EEG cap. Electrical generators of interictal epileptiform discharges were obtained using a distributed local autoregressive average (LAURA) algorithm as implemented in Cartool EEG software. BOLD activations were obtained using both spike-related and voltage-map EEG-fMRI analysis. The global maxima of each method were used to investigate the temporal relationship of BOLD time courses and to assess the spatial similarity using the Dice similarity index between functional connectivity maps. RESULTS: ESI, voltage-map and spike-related EEG-fMRI methods identified peaks in 15 (100%), 13 (67%) and 8 (53%) of the 15 patients, respectively. For all methods, maxima were localised within the same lobe, but differed in sub-lobar localisation, with a median distance of 22.8 mm between the highest peak for each method. The functional connectivity analysis showed that the temporal correlation between maxima only explained 38% of the variance between the time course of the BOLD response at the maxima. The mean Dice similarity index between seed-voxel functional connectivity maps showed poor spatial agreement. SIGNIFICANCE: Non-invasive methods for the localisation of the irritative zone have distinct spatial and temporal sensitivity to different aspects of the local cortical network involved in the generation of interictal epileptiform discharges

    The Neurocognitive Components of Pitch Processing: Insights from Absolute Pitch

    Get PDF
    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability

    The Neurocognitive Components of Pitch Processing: Insights from Absolute Pitch

    Get PDF
    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability

    Aromatase expression is increased in BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of <it>BRCA1 </it>gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression <it>in vitro</it>. Our objective was to characterise aromatase gene <it>(CYP19A1) </it>and its promoter expression in breast adipose and ovarian tissue in <it>BRCA1 </it>mutation carriers and unaffected controls.</p> <p>Methods</p> <p>We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women.</p> <p>Results</p> <p>We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of <it>BRCA1 </it>mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts.</p> <p>Conclusion</p> <p>Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in <it>BRCA1 </it>mutation carriers.</p

    Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression

    Get PDF
    Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to ARreactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP, FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52

    Dysregulated Nephrin in Diabetic Nephropathy of Type 2 Diabetes: A Cross Sectional Study

    Get PDF
    Podocyte specific proteins are dysregulated in diabetic nephropathy, though the extent of their expression loss is not identical and may be subject to different regulatory factors. Quantifying the degree of loss may help identify the most useful protein to use as an early biomarker of diabetic nephropathy.Protein expression of synaptopodin, podocin and nephrin were quantified in 15 Type 2 diabetic renal biopsies and 12 control patients. We found statistically significant downregulation of synaptopodin (P<0.0001), podocin (P = 0.0002), and nephrin (P<0.0001) in kidney biopsies of diabetic nephropathy as compared with controls. Urinary nephrin levels (nephrinuria) were then measured in 66 patients with Type 2 diabetes and 10 healthy controls by an enzyme-linked immunosorbent assay (Exocell, Philadelphia, PA). When divided into groups according to normo-, micro-, and macroalbuminuria, nephrinuria was found to be present in 100% of diabetic patients with micro- and macroalbuminuria, as well as 54% of patients with normoalbuminuria. Nephrinuria also correlated significantly with albuminuria (rho = 0.89, p<0.001), systolic blood pressure (rho = 0.32, p = 0.007), and correlated negatively with serum albumin (rho = -0.48, p<0.0001) and eGFR (rho = -0.33, p = 0.005).These data suggest that key podocyte-specific protein expressions are significantly and differentially downregulated in diabetic nephropathy. The finding that nephrinuria is observed in a majority of these normoalbuminuric patients demonstrates that it may precede microalbuminuria. If further research confirms nephrinuria to be a biomarker of pre-clinical diabetic nephropathy, it would shed light on podocyte metabolism in disease, and raise the possibility of new and earlier therapeutic targets

    De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies

    Get PDF
    Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%–6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders
    corecore