751 research outputs found

    Cold dust clumps in dynamically hot gas

    Get PDF
    Aims. We present clumps of dust emission from Herschel observations of the Large Magellanic Cloud (LMC) and their physical and statistical properties. We catalog cloud features seen in the dust emission from Herschel observations of the LMC, the Magellanic type irregular galaxy closest to the Milky Way, and compare these features with Hi catalogs from the ATCA+Parkes Hi survey. Methods. Using an automated cloud-finding algorithm, we identify clouds and clumps of dust emission and examine the cumulative mass distribution of the detected dust clouds. The mass of cold dust is determined from physical parameters that we derive by performing spectral energy distribution fits to 250, 350, and 500 ÎŒm emission from SPIRE observations using dust grain size distributions for graphite/silicate in low-metallicity extragalactic environments. Results. The dust cloud mass spectrum follows a power law distribution with an exponent of Îł = −1.8 for clumps larger than 4 × 10^2 M_⊙ and is similar to the Hi mass distribution. This is expected from the theory of ISM structure in the vicinity of star formation

    Survey of cometary CO2, CO, and particulate emissions using the Spitzer Space Telescope: Smog check for comets

    Full text link
    We surveyed 23 comets using the Infrared Array Camera on the Spitzer Space Telescope in wide filters centered at 3.6 and 4.5 microns. Emission in the 3.6 micron filter arises from sunlight scattered by dust grains; these images generally have a coma near the nucleus and a tail in the antisolar direction due to dust grains swept back by solar radiation pressure. The 4.5 micron filter contains the same dust grains, as well as strong emission lines from CO2 and CO gas; these show distinct morphologies, in which cases we infer they are dominated by gas. Based on the ratio of 4.5 to 3.6 micron brightness, we classify the survey comets as CO2+CO "rich" and "poor." This classification is correlated with previous classifications by A'Hearn based on carbon-chain molecule abundance, in the sense that comets classified as "depleted" in carbon-chain molecules are also "poor" in CO2+CO. The gas emission in the IRAC 4.5 micron images is characterized by a smooth morphology, typically a fan in the sunward hemisphere with a radial profile that varies approximately as the inverse of projected distance from the nucleus, as would apply for constant production and free expansion. There are very significant radial and azimuthal enhancements in many of the comets, and these are often distinct between the gas and dust, indicating that ejection of solid material may be driven either by H2O or CO2. Notable features in the images include the following. There is a prominent loop of gas emission from 103P/Hartley 2, possible due to an outburst of CO2 before the Spitzer image. Prominent, double jets are present in the image of 88P/Howell. A prominent single jet is evident for 3 comets. Spirals are apparent in 29P and C/2006 W3; we measure a rotation rate of 21 hr for the latter comet. Arcs (possibly parts of a spiral) are apparent in the images of 10P/Tempel 2, and 2P/Encke.Comment: accepted for publication in Icaru

    A survey of debris trails from short-period comets

    Full text link
    We observed 34 comets using the 24 micron camera on the Spitzer Space Telescope. Each image contains the nucleus and covers at least 10^6 km of each comet's orbit. Debris trails due to mm-sized or larger particles were found along the orbits of 27 comets; 4 comets had small-particle dust tails and a viewing geometry that made debris trails impossible to distinguish; and only 3 had no debris trail despite favorable observing conditions. There are now 30 Jupiter-family comets with known debris trails, of which 22 are reported in this paper for the first time. The detection rate is >80%, indicating that debris trails are a generic feature of short-period comets. By comparison to orbital calculations for particles of a range of sizes ejected over 2 yr prior to observation, we find that particles comprising 4 debris trails are typically mm-sized while the remainder of the debris trails require particles larger than this. The lower-limit masses of the debris trails are typically 10^11 g, and the median mass loss rate is 2 kg/s. The mass-loss rate in trail particles is comparable to that inferred from OH production rates and larger than that inferred from visible-light scattering in comae.Comment: accepted by Icarus; figures compressed for astro-p

    Long-Wavelength Excesses in Two Highly Obscured High-Mass X-Ray Binaries: IGR J16318–4848 and GX 301–2

    Get PDF
    We present evidence for excess long-wavelength emission from two high-mass X-ray binaries, IGR J16318-4848 and GX 301-2, that show enormous obscuration (N_H ≃ 10^(23)-10^(24) cm^(-2)) in their X-ray spectra. Using archival near- and mid-infrared data, we show that the spectral energy distributions of IGR J16318-4848 and GX 301-2 are substantially higher in the mid-infrared than their expected stellar emission. We successfully fit the excesses with ~1000 K blackbodies, which suggests that they are due to warm circumstellar dust that also gives rise to the X-ray absorption. However, we need further observations to constrain the detailed properties of the excesses. This discovery highlights the importance of mid-infrared observations for understanding highly obscured X-ray binaries

    Migration of Interplanetary Dust

    Full text link
    We numerically investigate the migration of dust particles with initial orbits close to those of the numbered asteroids, observed trans-Neptunian objects, and Comet Encke. The fraction of silicate asteroidal particles that collided with the Earth during their lifetime varied from 1.1% for 100 micron particles to 0.008% for 1 micron particles. Almost all asteroidal particles with diameter d>4 microns collided with the Sun. The peaks in the migrating asteroidal dust particles' semi-major axis distribution at the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. The probability of collisions of cometary particles with the Earth is smaller than for asteroidal particles, and this difference is greater for larger particles.Comment: Annals of the New York Academy of Sciences, 15 pages, 8 Figures, submitte

    Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview

    Get PDF
    The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 ÎŒm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 ÎŒm/24 ÎŒm ratio is somewhat lower than the average and the 70 ÎŒm/160 ÎŒm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers

    The Discovery of a Debris Disk Around the DAV White Dwarf PG 1541+651

    Full text link
    To search for circumstellar disks around evolved stars, we targeted roughly 100 DA white dwarfs from the Palomar Green survey with the Peters Automated Infrared Imaging Telescope (PAIRITEL). Here we report the discovery of a debris disk around one of these targets, the pulsating white dwarf PG 1541+651 (KX Draconis, hereafter PG1541). We detect a significant flux excess around PG1541 in the K-band. Follow-up near-infrared spectroscopic observations obtained at the NASA Infrared Telescope Facility (IRTF) and photometric observations with the warm Spitzer Space Telescope confirm the presence of a warm debris disk within 0.13-0.36 Rsun (11-32x the stellar radius) at an inclination angle of 60deg. At Teff = 11880 K, PG1541 is almost a twin of the DAV white dwarf G29-38, which also hosts a debris disk. All previously known dusty white dwarfs are of the DAZ/DBZ spectral type due to accretion of metals from the disk. High-resolution optical spectroscopy is needed to search for metal absorption lines in PG1541 and to constrain the accretion rate from the disk. PG1541 is only 55 pc away from the Sun and the discovery of its disk in our survey demonstrates that our knowledge of the nearby dusty white dwarf population is far from complete.Comment: MNRAS Letters, in pres

    Validation of Data Reduction Interactive Pipeline for FORCAST on SOFIA

    Get PDF
    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft equipped with 2.5 meter reflecting telescope. Among the suite of instruments onboard is the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST features two cameras for short (5-25 microns) and long (25-40 microns) wavelength detection. Making infrared observations in these wavelengths presents a challenge because the telescope and sky emit background radiation magnitudes brighter than the object of interest. Because of this, the raw FORCAST data must be corrected and reduced. The Data Reduction Interactive Pipeline (DRIP) was developed to process all FORCAST data using IDL procedures. Each step of the data reduction and calibration is saved for graphic interface. On all raw data, DRIP cleans bad pixels, applies droop and non-linearity correction, does background subtraction, and jailbar removal. It can optionally do image rectification and combine chop/nod groups. Our current mission, in collaboration with the Division of Planetary Sciences group, is to validate the DRIP output and ensure that the highest quality data is provided for imaging and the astronomical community

    Narrow Band Chandra X-ray Analysis of Supernova Remnant 3C391

    Full text link
    We present the narrow-band and the equivalent width (EW) images of the thermal composite supernova remnant (SNR) 3C391 for the X-ray emission lines of elements Mg, Si, & S using the Chandra ACIS Observational data. These EW images reveal the spatial distribution of the emission of the metal species Mg, Si, & S in the remnant. They have clumpy structure similar to that seen from the broadband diffuse emission, suggesting that they are largely of interstellar origin. We find an interesting finger-like feature protruding outside the southwestern radio border of the remnant, which is somewhat similar to the jet-like Si structure found in the famous SNR Cas A. This feature may possibly be the debris of the jet of ejecta which implies an asymmetrical supernova explosion of a massive progenitor star.Comment: 9 pages, 4 embedded figures, Chinese Journal of Astronomy and Astrophysics (ChJAA), in pres
    • 

    corecore