1 research outputs found

    New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200

    Full text link
    Aims.To investigate the very high energy (VHE: >100 GeV) γ\gamma-ray emission from the high-frequency peaked BL Lac 1ES 0229+200. Methods.Observations of 1ES 0229+200 at energies above 580 GeV were performed with the High Energy Stereoscopic System (HESS) in 2005 and 2006. Results.1ES 0229+200 is discovered by HESS to be an emitter of VHE photons. A signal is detected at the 6.6σ\sigma level in the HESS observations (41.8 h live time). The integral flux above 580 GeV is (9.4±1.5stat±1.9syst)×1013(9.4\pm1.5_{\rm stat}\pm1.9_{\rm syst}) \times 10^{-13} cm-2 s-1, corresponding to ~1.8% of the flux observed from the Crab Nebula. The data show no evidence for significant variability on any time scale. The observed spectrum is characterized by a hard power law ( Γ=2.50±0.19stat±0.10syst\Gamma = 2.50\pm0.19_{\rm stat}\pm0.10_{\rm syst}) from 500 GeV to ~15 TeV. Conclusions.The high-energy range and hardness of the observed spectrum, coupled with the object's relatively large redshift ( z = 0.1396), enable the strongest constraints so far on the density of the Extragalactic Background Light (EBL) in the mid-infrared band. Assuming that the emitted spectrum is not harder than Γint1.5\Gamma_{\rm int} \approx 1.5, the HESS data support an EBL spectrum \propto λ1\lambda^{-1} and density close to the lower limit from source counts measured by Spitzer, confirming the previous indications from the HEGRA data of 1ES 1426+428 (z=0.129). Irrespective of the EBL models used, the intrinsic spectrum of 1ES 0229+200 is hard, thus locating the high-energy peak of its spectral energy distribution above a few TeV
    corecore