586 research outputs found

    The effect of zinc sulphate syrup on children's respiratory tract infections

    Get PDF
    BACKGROUND AND OBJECTIVE: After Iron, zinc is the second most abundant trace element in the body that is present in all organs, tissues and body fluids. It is a necessary component for maintaining immunological integrity antioxidant activity, and has critical role in the control and prevention of infection. The aim of this study was to investigate the effect of zinc sulphate syrup in treatment of children with respiratory tract infection. METHODS: In this randomized clinical trial study, one hundred and twenty four children with respiratory infection (62 in case and 62 in control group) from pediatric ward of Hajar hospital of Sharekord university enrolled. Both groups received standard treatment. In addition to, zinc sulphate syrup was given to case group and placebo to control group. Respiratory rate, bed and cough and fever duration were compared between the case and control groups (IRCT: 201103025951N1). FINDINGS: The mean duration of fever in the case group was 2.6±0.82 days and in the control group 4±1.5 days (p<0.001). The mean of bed duration in the case group was 4.7±1.5 days and in the control group 5±1.8 days (p=0.42). The mean of cough duration in the case and control groups was 3.4±1.3 and 4.7±1.6 days respectively (p=0.09). Respiratory rate in the case group was 28.3±4.3 and in the control 28.1±4.9 (p=0.77). CONCLUSION: The study showed that zinc supplementation has a beneficial effect in decreasing the fever duration in children with respiratory infection. But there was no significant effect on respiratory rate, duration of bed and cough

    Brazilian disk tests: Circular holes and size effects

    Get PDF
    Abstract Size effects related to circular notched samples imply that the strength of the structure decreases as the hole radius increases. In this framework, Brazilian disk tests are carried out on brittle samples containing a circular hole. By considering two different polymers, namely Polymethyl-methacrylate (PMMA) and General-purpose Polystyrene (GPPS), respectively, five different notch radii were machined and tested for each material, keeping low the hole to disk diameter ratio in order to reproduce an infinite geometry. Under this assumption, analytical relationship for the stress field and the stress intensity factor can be implemented without loss of accuracy. The coupled finite fracture mechanics (FFM) is then applied to catch the recorded failure stresses, allowing a complete description of the experimental size effects. On the contrary, the smallest radius leads to a locally negative geometry, opening the discussion on the stability of crack propagation in circularly notched plates under generic biaxial loadings

    Investigating the Security of EV Charging Mobile Applications As an Attack Surface

    Full text link
    The adoption rate of EVs has witnessed a significant increase in recent years driven by multiple factors, chief among which is the increased flexibility and ease of access to charging infrastructure. To improve user experience, increase system flexibility and commercialize the charging process, mobile applications have been incorporated into the EV charging ecosystem. EV charging mobile applications allow consumers to remotely trigger actions on charging stations and use functionalities such as start/stop charging sessions, pay for usage, and locate charging stations, to name a few. In this paper, we study the security posture of the EV charging ecosystem against remote attacks, which exploit the insecurity of the EV charging mobile applications as an attack surface. We leverage a combination of static and dynamic analysis techniques to analyze the security of widely used EV charging mobile applications. Our analysis of 31 widely used mobile applications and their interactions with various components such as the cloud management systems indicate the lack of user/vehicle verification and improper authorization for critical functions, which lead to remote (dis)charging session hijacking and Denial of Service (DoS) attacks against the EV charging station. Indeed, we discuss specific remote attack scenarios and their impact on the EV users. More importantly, our analysis results demonstrate the feasibility of leveraging existing vulnerabilities across various EV charging mobile applications to perform wide-scale coordinated remote charging/discharging attacks against the connected critical infrastructure (e.g., power grid), with significant undesired economical and operational implications. Finally, we propose counter measures to secure the infrastructure and impede adversaries from performing reconnaissance and launching remote attacks using compromised accounts

    Berry effect in acoustical polarization transport in phononic crystals

    Full text link
    We derive the semiclassical equations of motion of a transverse acoustical wave packet propagating in a phononic crystal subject to slowly varying perturbations. The formalism gives rise to Berry effect terms in the equations of motion, manifested as the Rytov polarization rotation law and the polarization-dependent Hall effect. We show that the formalism is also applicable to the case of non-periodic inhomogeneous media, yielding explicit expressions for the Berry effect terms.Comment: To appear in JETP Let

    Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies

    Get PDF
    The introduction of advanced therapy medicinal products (ATMPs) to the global pharma market has been revolutionizing the pharmaceutical industry and has opened new routes for treating various types of cancers and incurable diseases. In the past two decades, a noticeable part of clinical practices has been devoting progressively to these products. The first step to develop such an ATMP product is to be familiar with other approved products to obtain a general view about this industry trend. The present paper depicts an overall perspective of approved ATMPs in different countries, while reflecting the degree of their success in a clinical point of view and highlighting their main safety issues and also related market size as a whole. In this regard, published articles regarding safety, efficacy, and market size of approved ATMPs were reviewed using the search engines PubMed, Scopus, and Google Scholar. For some products which the related papers were not available, data on the relevant company website were referenced. In this descriptive study, we have introduced and classified approved cell, gene, and tissue engineering-based products by different regulatory agencies, along with their characteristics, manufacturer, indication, approval date, related regulatory agency, dosage, product description, price and published data about their safety and efficacy. In addition, to gain insights about the commercial situation of each product, we have gathered accessible sale reports and market size information that pertain to some of these products

    Solid-state laser system for laser cooling of Sodium

    Full text link
    We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms

    miR-455-5p downregulation promotes inflammation pathways in the relapse phase of relapsing-remitting multiple sclerosis disease

    Get PDF
    MicroRNA-455-5p (miR-455-5p) seems to have an anti-inflammatory role in the immune system since its expression is induced by IL-10 cytokine. Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disease of the central nervous system that is caused by an autoimmune inflammatory attack against the myelin insulation of neurons. The expression level of miR-455-5p and its role in MS pathogenesis has yet to be elucidated. We found that miR-455-5p expression was highly correlated with disease severity in MS patients. miR-455-5p expression inversely correlates with its inflammatory-predicted targets (MyD88 and REL) in relapse- and remitting-phase patients. Luciferase assays confirm that MyD88 and REL are direct targets of miR-455-5p. This study represents the first report of the miR-455-5p acts as an anti-inflammatory role in MS, at least partially through targeting MyD88 and REL. This study may provide important information for the use of miR-455-5p as a novel strategy to improve the severity of disease and control inflammation and attack in MS patients. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670mW670\,\mathrm{mW} output power at 671nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/24I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented

    Understanding and responding to COVID-19 in Wales: protocol for a privacy-protecting data platform for enhanced epidemiology and evaluation of interventions

    Get PDF
    INTRODUCTION: The emergence of the novel respiratory SARS-CoV-2 and subsequent COVID-19 pandemic have required rapid assimilation of population-level data to understand and control the spread of infection in the general and vulnerable populations. Rapid analyses are needed to inform policy development and target interventions to at-risk groups to prevent serious health outcomes. We aim to provide an accessible research platform to determine demographic, socioeconomic and clinical risk factors for infection, morbidity and mortality of COVID-19, to measure the impact of COVID-19 on healthcare utilisation and long-term health, and to enable the evaluation of natural experiments of policy interventions. METHODS AND ANALYSIS: Two privacy-protecting population-level cohorts have been created and derived from multisourced demographic and healthcare data. The C20 cohort consists of 3.2 million people in Wales on the 1 January 2020 with follow-up until 31 May 2020. The complete cohort dataset will be updated monthly with some individual datasets available daily. The C16 cohort consists of 3 million people in Wales on the 1 January 2016 with follow-up to 31 December 2019. C16 is designed as a counterfactual cohort to provide contextual comparative population data on disease, health service utilisation and mortality. Study outcomes will: (a) characterise the epidemiology of COVID-19, (b) assess socioeconomic and demographic influences on infection and outcomes, (c) measure the impact of COVID-19 on short -term and longer-term population outcomes and (d) undertake studies on the transmission and spatial spread of infection. ETHICS AND DISSEMINATION: The Secure Anonymised Information Linkage-independent Information Governance Review Panel has approved this study. The study findings will be presented to policy groups, public meetings, national and international conferences, and published in peer-reviewed journals

    First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland

    Get PDF
    Reports of ChAdOx1 vaccine–associated thrombocytopenia and vascular adverse events have led to some countries restricting its use. Using a national prospective cohort, we estimated associations between exposure to first-dose ChAdOx1 or BNT162b2 vaccination and hematological and vascular adverse events using a nested incident-matched case-control study and a confirmatory self-controlled case series (SCCS) analysis. An association was found between ChAdOx1 vaccination and idiopathic thrombocytopenic purpura (ITP) (0–27 d after vaccination; adjusted rate ratio (aRR) = 5.77, 95% confidence interval (CI), 2.41–13.83), with an estimated incidence of 1.13 (0.62–1.63) cases per 100,000 doses. An SCCS analysis confirmed that this was unlikely due to bias (RR = 1.98 (1.29–3.02)). There was also an increased risk for arterial thromboembolic events (aRR = 1.22, 1.12–1.34) 0–27 d after vaccination, with an SCCS RR of 0.97 (0.93–1.02). For hemorrhagic events 0–27 d after vaccination, the aRR was 1.48 (1.12–1.96), with an SCCS RR of 0.95 (0.82–1.11). A first dose of ChAdOx1 was found to be associated with small increased risks of ITP, with suggestive evidence of an increased risk of arterial thromboembolic and hemorrhagic events. The attenuation of effect found in the SCCS analysis means that there is the potential for overestimation of the reported results, which might indicate the presence of some residual confounding or confounding by indication. Public health authorities should inform their jurisdictions of these relatively small increased risks associated with ChAdOx1. No positive associations were seen between BNT162b2 and thrombocytopenic, thromboembolic and hemorrhagic events
    corecore