107 research outputs found

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    Simple proof of gauge invariance for the S-matrix element of strong-field photoionization

    Full text link
    The relationship between the length gauge (LG) and the velocity gauge (VG) exact forms of the photoionization probability amplitude is considered. Our motivation for this paper comes from applications of the Keldysh-Faisal-Reiss (KFR) theory, which describes atoms (or ions) in a strong laser field (in the nonrelativistic approach, in the dipole approximation). On the faith of a certain widely-accepted assumption, we present a simple proof that the well-known LG form of the exact photoionization (or photodetachment) probability amplitude is indeed the gauge-invariant result. In contrast, to obtain the VG form of this probability amplitude, one has to either (i) neglect the well-known Goeppert-Mayer exponential factor (which assures gauge invariance) during all the time evolution of the ionized electron or (ii) put some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16 October 2006 to J. Phys. A and rejected. This is the extended version (with 2 figures), which is identical to the paper published online on 12 December 2007 in Physica Script

    Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations

    Full text link
    Numerically determined ionization rates for the field ionization of atomic hydrogen in strong and short laser pulses are presented. The laser pulse intensity reaches the so-called "barrier suppression ionization" regime where field ionization occurs within a few half laser cycles. Comparison of our numerical results with analytical theories frequently used shows poor agreement. An empirical formula for the "barrier suppression ionization"-rate is presented. This rate reproduces very well the course of the numerically determined ground state populations for laser pulses with different length, shape, amplitude, and frequency. Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in ps-format, submitted for publication to Physical Review A, WWW: http://www.physik.tu-darmstadt.de/tqe

    On the absence of bound-state stabilization through short ultra-intense fields

    Get PDF
    We address the question of whether atomic bound states begin to stabilize in the short ultra-intense field limit. We provide a general theory of ionization probability and investigate its gauge invariance. For a wide range of potentials we find an upper and lower bound by non-perturbative methods, which clearly exclude the possibility that the ultra intense field might have a stabilizing effect on the atom. For short pulses we find almost complete ionization as the field strength increases.Comment: 34 pages Late

    On the Influence of Pulse Shapes on Ionization Probability

    Get PDF
    We investigate analytical expressions for the upper and lower bounds for the ionization probability through ultra-intense shortly pulsed laser radiation. We take several different pulse shapes into account, including in particular those with a smooth adiabatic turn-on and turn-off. For all situations for which our bounds are applicable we do not find any evidence for bound-state stabilization.Comment: 21 pages LateX, 10 figure

    Ionization Probabilities through ultra-intense Fields in the extreme Limit

    Get PDF
    We continue our investigation concerning the question of whether atomic bound states begin to stabilize in the ultra-intense field limit. The pulses considered are essentially arbitrary, but we distinguish between three situations. First the total classical momentum transfer is non-vanishing, second not both the total classical momentum transfer and the total classical displacement are vanishing together with the requirement that the potential has a finite number of bound states and third both the total classical momentum transfer and the total classical displacement are vanishing. For the first two cases we rigorously prove, that the ionization probability tends to one when the amplitude of the pulse tends to infinity and the pulse shape remains fixed. In the third case the limit is strictly smaller than one. This case is also related to the high frequency limit considered by Gavrila et al.Comment: 16 pages LateX, 2 figure

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
    • …
    corecore