7,760 research outputs found

    Repair techniques for celion/LARC-160 graphite/polyimide composite structures

    Get PDF
    The large stiffness-to-weight and strength-to-weight ratios of graphite composite in combination with the 600 F structural capability of the polyimide matrix can reduce the total structure/TPS weight of reusable space vehicles by 20-30 percent. It is inevitable that with planned usage of GR/PI structural components, damage will occur either in the form of intrinsic flaw growth or mechanical damage. Research and development programs were initiated to develop repair processes and techniques specific to Celion/LARC-160 GR/PI structure with emphasis on highly loaded and lightly loaded compression critical structures for factory type repair. Repair processes include cocure and secondary bonding techniques applied under vacuum plus positive autoclave pressure. Viable repair designs and processes are discussed for flat laminates, honeycomb sandwich panels, and hat-stiffened skin-stringer panels. The repair methodology was verified through structural element compression tests at room temperature and 315 C (600 F)

    Graphite/Larc-160 technology demonstration segment test results

    Get PDF
    A structural test program was conducted on a Celion/LARC-160 graphite/polyimide technology demonstration segment (TDS) to verify the technology. The 137 x 152 cm (54 x 60 in.) TDS simulates a full-scale section of the orbiter composite body flap design incorporating three ribs and extending from the forward cove back to the rear spar. The TDS was successfully subjected to mechanical loads and thermal environments (-170 to 316 C) simulating 100 shuttle orbiter missions. Successful completion of the test program verified the design, analysis, and fabrication methodology for bonded Gr/PI honeycomb sandwich structure and demonstration that Gr/PI composite technology readiness is established

    Millisecond accuracy video display using OpenGL under Linux

    Get PDF
    To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time

    Pursuit of purity: Measurement of chelation binding affinities for NOTA, DOTA, and desferal with applications to effective specific activity

    Get PDF
    Introduction The effective specific activity of a radioisotope is an indirect and highly useful way to describe a radioactive sample’s purity. A high effective specific activity combines the concept of an isotopically pure product with suitability via selectivity of a particular chelating body. The primary goals of this work are twofold: 1) To determine which metallic impurities have the largest impact on the effective specific activity for a given chelator, and 2) to form a model based on the binding affinities of each metal for to calculate a ‘theoretical effective specific activ-ity’ from broad band trace metal analysis. If successful, this information can be used to guide the production of high specific activity products through the systematic elimination of high-impact metallic impurities. Material and Methods Phosphor plate thin layer chromatography (TLC) was used to measure the effective specific activ-ity of 64Cu by NOTA and DOTA, and 89Zr by des-feral (DF). Typical measured effective specific activities are 2–5 Ci/μmol for 64Cu and 1–2 Ci/μmol for 89Zr. Samples were created containing increasing cod competitive burdens (X) of CuCl2, ZnCl2, FeCl2, NiCl2, CrCl3, CoCl2, MnCl2, and YCl3. Standard concentrations were measured by microwave plasma atomic emission spectrometry. 50 pmol of NOTA, DOTA, or DF were added following the activity aliquots of 64Cu or 89Zr. Labeling efficien-cies (64Cu-NOTA, 64Cu-DOTA, 89Zr-DF) were measured using TLC’s, and were fit by linear regression to the form f(X) = b/(1 − AX), where A is the chelation affinity (inverse of dissociation constant) and X is the molar ratio of the metallic impurity to the amount of chelator. Results and Conclusion Affinity of Zr for DF was assumed to be unity, while the affinities of Cu for NOTA and DOTA were explicitly measured and were found to be 0.93 ± 0.13 and 5.2 ± 3.2 respectively. It was found that Cu had the highest affinity for NOTA by a factor of 266, and that Zr had the highest affinity for DF by a factor of 40. • In order of decreasing affinity to NOTA: Cu, Zn, Fe, Co, Cr, Y, and Ni • In order of decreasing affinity to DOTA: Cu, Y, Zn, Co, Ni, Cr, and Fe • In order of decreasing affinity to DF: Zr, Y, Cu, Zn, Ni, Fe, Co, Cr These results suggest that aside from the carrier element it is most important to remove zinc from 64Cu products prior to chelation with NOTA and yttrium from 64Cu and 89Zr products prior to chelation with DOTA and DF, respectively. Therefore, it is logical to believe that 89Zr effective specific activities could be greatly improved by secondary separations with the goal of re-moving additional yttrium target material. Chelation affinities of NOTA, DOTA, and DF for several common metals have successfully been investigated. These values will guide our future attempts to provide high effective specific activity 64¬Cu and 89Zr. Furthermore, a preliminary model has been formed to calculate effective specific activity from the quantitative broad band analysis of trace metals. Future work will include chelator affinity measurements for other likely contaminants, such as scandium, titanium, zirconium, molybdenum, niobium, gold, gallium, and germanium. Details will be presented

    The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

    Get PDF
    Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the SCUBA-2 shared-risk observations at 450 μ\mum and 850 μ\mum of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the HARP 12^{12}CO J=3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α\alpha map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12^{12}CO J=3-2 line contamination, to 27 previously identified clumps in OMC-4. This allows us to quantify the effect of line contamination on the ratio of 850 μ\mum to 450 μ\mum flux densities and how it modifies the deduced spectral index of emissivity β\beta for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC-5 has a 12^{12}CO J=3-2 contamination level of 16 %. Furthermore, we find the strongest contamination level (44 %) towards a young star with disk near OMC-2. This work is part of the JCMT Gould Belt Legacy Survey.Comment: 13 pages, 6 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS

    Distributions of eight meteorological variables at Cape Kennedy, Florida and Vandenberg Air Force Base, California

    Get PDF
    Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values

    A convolution BiLSTM neural network model for Chinese event extraction

    Get PDF
    Chinese event extraction is a challenging task in information extraction. Previous approaches highly depend on sophisticated feature engineering and complicated natural language processing (NLP) tools. In this paper, we first come up with the language specific issue in Chinese event extraction, and then propose a convolution bidirectional LSTM neural network that combines LSTM and CNN to capture both sentence-level and lexical information without any hand-craft features. Experiments on ACE 2005 dataset show that our approaches can achieve competitive performances in both trigger labeling and argument role labeling
    • …
    corecore