464 research outputs found

    ASSESSMENT OF THE NUTRITIONAL BEHAVIOUR AMONG COLLEGE STUDENTS-A SURVEY

    Get PDF
    Objective: To assess the nutritional behaviour among college students.Methods: A prospective observational survey was conducted randomly among college students in Guntur. A self-administered data collection form was designed to understand the nutritional behaviour of the subjects.Results: A total of 300 subjects were included in the study, among them 225(75%) were females and 75(25%) were males. The survey revealed that most of them skipped their meals. A majority of 184(61.33%) students opted for high-fat diet and 268(89.33%) opted for starch-rich foods. A total of 222(74%) students usually eat four different varieties of vegetables but only 71(23.66%) of them eat fruits in each week.Conclusion: From this study, it was evident that majority of students have poor dietary habits. Lack of awareness on balanced diet and due to their busy schedules, teenagers were not maintaining a proper diet. This could be reduced by bringing minimum awareness on dietary habits to them. Taking proper diet is very essential to reduce the risk of diseases in future and to improve nourishment

    Roth Net-Assisted Endoscopic-Guided Manometry Catheter Placement.

    Get PDF
    High-resolution esophageal manometry (HRM) has become the gold standard to diagnose esophageal motility disorders. Usually, this procedure is performed by introducing the catheter, which has pressure sensors, into the esophagus and proximal stomach via the nares. Repeated coiling of the catheter and inability to pass through the gastroesophageal junction (GEJ) are common challenges encountered. Endoscopy-guided placement of the catheter can overcome these difficulties. However, sometimes even with the use of endoscopy, it is difficult to advance catheter due to anatomical variants. The extreme fragility of the catheter and sensors and the high cost of this reusable device precludes the use of biopsy forceps or snare to advance the catheter. There is no literature on using accessories during endoscopy in case of difficult placement under direct visualization. We report a unique case of using Roth Net via the suction channel to advance esophageal manometry catheter into the stomach by using endoscopy

    On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?

    Get PDF
    This is the final version. Available on open access from European Geosciences Union via the DOI in this recordData availability. CarbonTracker CT2016 results were provided by NOAA ESRL, Boulder, Colorado, USA, from the website at https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ (National Oceanic and Atmospheric Administration (NOAA) Earth System Laboratory (ESRL), 2019a). CASA GFED 4.1 and CASA CMS NEE fluxes were also downloaded from the CT2016 website. The GOSAT L4 product and VISIT NEE were downloaded from the GOSAT Data Archive Service (https://data2.gosat.nies.go.jp; NIES, 2019). The Dai Global Palmer Drought Severity Index was downloaded from the Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory (https://doi.org/10.5065/D6QF8R93; Dai, 2017). NASA GOME-2 SIF products were obtained from the Aura Validation Data Center (https://avdc.gsfc.nasa.gov/; Aura Validation Data Center, 2019). FLUXCOM products were obtained from the data portal of the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de/geodb/projects/Home.php.; Max Plank Institue for Biogeochemistry, 2019). MERRA-2 products were downloaded from MDISC (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/; Global Modeling and Assimilation Office, 2019), managed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The GEOS-Chem forward and adjoint models are freely available to the public. Instructions for downloading and running the models can be found at http://wiki.seas.harvard.edu/geos-chem (Atmospheric Chemistry Modeling Group at Harvard University , 2019). ACOS GOSAT lite files were obtained from the CO2 Virtual Science Data Environment (https://co2.jpl.nasa.gov/; Jet Propulsion Laboratory, California Institute of Technology, 2019). The SST anomalies were downloaded from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) website (https://www.esrl.noaa.gov; National Oceanic and Atmospheric Administration (NOAA) Earth System Laboratory (ESRL), 2019b).Interannual variations in temperature and precipitation impact the carbon balance of terrestrial ecosystems, leaving an imprint in atmospheric CO2. Quantifying the impact of climate anomalies on the net ecosystem exchange (NEE) of terrestrial ecosystems can provide a constraint to evaluate terrestrial biosphere models against and may provide an emergent constraint on the response of terrestrial ecosystems to climate change. We investigate the spatial scales over which interannual variability in NEE can be constrained using atmospheric CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT). NEE anomalies are calculated by performing a series of inversion analyses using the GEOS-Chem adjoint model to assimilate GOSAT observations. Monthly NEE anomalies are compared to "proxies", variables that are associated with anomalies in the terrestrial carbon cycle, and to upscaled NEE estimates from FLUXCOM. Statistically significant correlations (P<0.05) are obtained between posterior NEE anomalies and anomalies in soil temperature and FLUXCOM NEE on continental and larger scales in the tropics, as well as in the northern extratropics on subcontinental scales during the summer (R2≥0.49), suggesting that GOSAT measurements provide a constraint on NEE interannual variability (IAV) on these spatial scales. Furthermore, we show that GOSAT flux inversions are generally better correlated with the environmental proxies and FLUXCOM NEE than NEE anomalies produced by a set of terrestrial biosphere models (TBMs), suggesting that GOSAT flux inversions could be used to evaluate TBM NEE fluxes.Environment and Climate Change CanadaNatural Sciences and Engineering Research Council of CanadaCanadian Space Agenc

    Enhanced optical activity using the orbital angular momentum of structured light

    Get PDF
    Recent molecular photonics studies have highlighted the significant role that phase-structured light possessing orbital angular momentum (OAM) can have when interacting with matter. These studies discovered chiroptical effects sensitive to both the magnitude and sign of the optical OAM in both the absorption and scattering of twisted photons by molecules and nanoparticles. Specifically, it has been shown how a structured beam engaging with electric-quadrupole transitions in the material allows a unique sensitivity to the helical-phase structure of twisted light. In this paper we highlight experimental methodologies and systems suitable to observe and quantify the chiroptical processes of Rayleigh and Raman optical activity, and the newly discovered circular-vortex differential scattering effect with structured light—including the importance of off-axis beam alignment, input beam intensity structure, multipolar moments, and scattering-angle dependencies. It is shown that with a judicious choice of experimental setup, chiroptical effects that scale with the topological charge or OAM of the input beam enable optical activity signals to be enhanced and significantly exceed those based solely on circularly polarized, unstructured light. The new technique thus offers a highly useful and important spectroscopic application of structured light. The more detailed role that perfect optical vortices with high OAM will play in such optical activity effects is now highlighted, to show where there is substantial scope for experimental application, specifically in vibrational optical activity and chiral spectroscopy

    Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals

    Get PDF
    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E-g). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10(5). The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials

    Components of resistance to sorghum shoot fly, Atherigona soccata

    Get PDF
    Sorghum shoot fly, Atherigona soccata is one of the major constraints in sorghum production, and host plant resistance is one of the components to control sorghum shoot fly. Thirty sorghum genotypes were evaluated for different mechanisms of resistance and morphological and agronomic traits during the rainy and postrainy seasons. The sorghum genotypes, Maulee, Phule Anuradha, M 35-1, CSV 18R, IS 2312, Giddi Maldandi, and RVRT 3 suffered lower shoot fly damage, and also exhibited high grain yield potential during the postrainy season. ICSB 433, ICSV 700, ICSV 25019, ICSV 25022, ICSV 25026, ICSV 25039, PS 35805, Akola Kranti, and IS 18551 exhibited antixenosis for oviposition and antibiosis against sorghum shoot fly, A. soccata. Leaf glossiness, plant vigor, leafsheath pigmentation and trichomes were associated with resistance/susceptibility to shoot fly. Path coefficient analysis indicated that direct effects and correlation coefficients of leaf glossiness, plant vigor, plant height, plant color and trichomes were in the same direction, suggesting that these traits can be used to select sorghum genotypes for resistance to shoot fly. Principal co-ordinate analysis based on shoot fly resistance traits and morphological traits placed the test genotypes into different groups. The genotypes placed in different groups can be used to increase the levels and broaden the genetic base of resistance to shoot fly. The environmental coefficient of variation and phenotypic coefficient of variation for shoot fly resistance and morphological traits were quite high, indicating season specific expression of resistance to sorghum shoot fly. High broadsense heritability, genetic advance and genotypic coefficient of variation suggested the predominance of additive nature of genes controlling shoot fly resistance, suggesting that pedigree breeding can be used to transfer shoot fly resistance into high yielding cultivars. This information will be useful for developing shoot fly-resistant high yielding cultivars for sustainable crop production

    Heterosis and combining ability for grain Fe and Zn concentration and agronomic traits in sorghum [Sorghum bicolor (L.) Moench]

    Get PDF
    Studies on genetics and trait relationships with grain yield and other agronomic traits are critical for improving the micronutrients content in the grain and it forms an effective strategy for breeding bio fortified sorghum. It greatly contributes to addressing micronutrient malnutrition in poor people who are dependent on sorghum as a staple food. Development of hybrids with high grain Fe and Zn and higher yield enables delivery of commercial products that address both food and nutrition while bringing profits to farmers. The present study was aimed at developing suitable breeding strategy and improving breeding products using gene action, heterosis and combining ability analysis for improving the grain Iron (Fe) and Zinc (Zn) concentration and grain yield in sorghum. This study was conducted in Line Tester mating design involving seven parents. A total of 12 new hybrids were developed by mating three lines with four testers. The combining ability of the crosses indicated predominance of dominance variance than additive variance for the agronomic traits such as days to 50% flowering, grain yield, grain Fe and Zn concentrations except for plant height and 100 seed weight. Higher magnitude of SCA than GCA variance for grain iron and zinc concentrations indicated the importance of non-additive gene action in the improvement of nutritional traits. Hybrids exhibited heterosis for agronomic traits and for grain Fe concentration and grain Zn. Most of the traits showed significant positive heterosis over mid parent value indicating the predominance of dominant gene action except the trait 100 seed weight. Significant positive mid-parent heterosis for grain iron indicated that there would be an opportunity to exploit heterosis in improving for grain Fe. But for Zn concentration, there is a limited possibility for exploitation of heterosis. This study suggested that simple selection will improve plant height and 100 seed weight in sorghum but heterosis breeding is more useful for improving grain yield. While both parents need to be improved for improving grain Zn concentration, there is good scope for exploiting heterosis for improving grain Fe concentration in sorghum

    Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes.

    Get PDF
    Perovskite nanoplatelets (NPls) hold promise for light-emitting applications, having achieved photoluminescence quantum efficiencies approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum efficiencies (EQEs) of blue-emitting NPl light-emitting diodes (LEDs) have reached only 0.12%. In this work, we show that NPl LEDs are primarily limited by a poor electronic interface between the emitter and hole injector. We show that the NPls have remarkably deep ionization potentials (≥6.5 eV), leading to large barriers for hole injection, as well as substantial nonradiative decay at the NPl/hole-injector interface. We find that an effective way to reduce these nonradiative losses is by using poly(triarylamine) interlayers, which lead to an increase in the  EQE of the blue (464 nm emission wavelength) and sky-blue (489 nm emission wavelength) LEDs to 0.3% and 0.55%, respectively. Our work also identifies the key challenges for further efficiency increases
    • …
    corecore