179 research outputs found
Recommended from our members
A case of atypical disseminated herpes simplex virus 1 with hepatitis in a liver transplant recipient: the need for dermatologic evaluation
Disseminated herpes simplex virus (HSV) is mainly seen in immunocompromised individuals. Atypical lesions can be present in both primary infection and reactivation disease. Compared with the general population, inmunocompromised hosts are at greater risk of increased persistency and severity of clinical manifestations, including severe systemic involvement such as esophagitis, meningitis, and hepatitis. Herein, we report the case of a liver transplant recipient with atypical disseminated herpes simplex virus-1 complicated by HSV-related hepatitis. Dermatological consultation and histological assessment were crucial for a correct diagnosis and treatment
Caso clínico: Vía aérea difícil en paciente con Espondilitis Anquilopoyética severa (II)
Segunda parte del caso descrito en el artículo anterior: Caso clínico: Vía aérea difícil en paciente con Espondilitis Anquilopoyética severa (I
Mayor riesgo de obesidad y obesidad central en mujeres post-menopáusicas sedentarias
Objetivos: Establecer la influencia de un comportamiento sedentario (tiempo sentado) sobre la composición corporal en mujeres mayores de Aragón. Métodos: Participaron un total de 457 mujeres. Las horas de caminar se utilizaron para definir comportamiento activo (> 1 vs. 4 vs. < 4 h/día). La evaluación antropométrica se llevó a cabo siguiendo las recomendaciones ISAK. La grasa corporal se estimó mediante bio-impedancia eléctrica. Se utilizó ANOVA para analizar diferencias entre grupos y análisis de regresión logística para estudiar la asociación entre los comportamientos activos y sedentarios con la composición corporal. Resultados: El grupo de mujeres sedentarias tenía mayor peso, IMC, perímetro de cintura y masa grasa que las mujeres no sedentarias (todos p < 0,05). Además, aquellas mujeres que permanecían sentadas más de 4 horas al día tenían un riesgo 1,7, 2,7 y 1,7 veces mayor de padecer sobrepeso, obesidad y obesidad central, respectivamente, independientemente de las horas de caminar (95% IC [1,006-2,739]; [1,518-4,491] y [1,154-2,565]). Cuando el nivel de actividad y sedentarismo fueron estudiados de manera conjunta, se observó que las mujeres no activas y sedentarias tenían 2,0 veces más probabilidad de tener sobrepeso (95% IC [0,995-3,961]), 4,4 de padecer obesidad (95% IC [2,101-9,264]) y 2,3 de sufrir obesidad central (95% IC [1,329-3,939]) que las mujeres con un comportamiento activo y no sedentario. Conclusión: Permanecer sentado más de 4 horas al día aumenta el riesgo de padecer sobrepeso, obesidad y obesidad central, independientemente de las horas de caminar en mujeres postmenopáusicas
The Spanish Infrared Camera onboard the EUSO-BALLOON (CNES) flight on August 24, 2014
The EUSO-Balloon (CNES) campaign was held during Summer 2014 with a launch on August
24. In the gondola, next to the Photo Detector Module (PDM), a completely isolated Infrared
camera was allocated. Also, a helicopter which shooted flashers flew below the balloon. We have
retrieved the Cloud Top Height (CTH) with the IR camera, and also the optical depth of the nonclear atmosphere have been inferred with two approaches: The first one is with the comparison of the brightness temperature of the cloud and the real temperature obtained after the pertinent
corrections. The second one is by measuring the detected signal from the helicopter flashers by the IR Camera, considering the energy of the flashers and the location of the helicopter
The atmospheric science of JEM-EUSO
An Atmospheric Monitoring System (AMS) is critical suite of instruments for JEM-EUSO whose aim is to detect Ultra-High Energy Cosmic Rays (UHECR) and (EHECR) from Space. The AMS
comprises an advanced space qualified infrared camera and a LIDAR with cross checks provided by a ground-based and airborne Global Light System Stations. Moreover the Slow Data Mode of JEM-EUSO has been proven crucial for the UV background analysis by comparing the UV and IR images. It will also contribute to the investigation of atmospheric effects seen in the data from the GLS or even to our understanding of Space Weather
EUSO-SPB1 mission and science
The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations
The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives
EUSO-SPB2 Telescope Optics and Testing
The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Cherenkov- and fluorescence emission of extensive air showers from cosmic rays at the PeV and EeV-scale, and search for τ-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Cherenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Cherenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand
- …