406 research outputs found
Source geometry from exceptionally high resolution long period event observations at Mt Etna during the 2008 eruption
During the second half of June, 2008, 50 broadband seismic stations were
deployed on Mt Etna volcano in close proximity to the summit, allowing us to
observe seismic activity with exceptionally high resolution. 129 long period
events (LP) with dominant frequencies ranging between 0.3 and 1.2 Hz, were
extracted from this dataset. These events form two families of similar
waveforms with different temporal distributions. Event locations are performed
by cross-correlating signals for all pairs of stations in a two-step scheme. In
the first step, the absolute location of the centre of the clusters was found.
In the second step, all events are located using this position. The hypocentres
are found at shallow depths (20 to 700 m deep) below the summit craters. The
very high location resolution allows us to detect the temporal migration of the
events along a dike-like structure and 2 pipe shaped bodies, yielding an
unprecedented view of some elements of the shallow plumbing system at Mount
Etna. These events do not seem to be a direct indicator of the ongoing lava
flow or magma upwelling
Monte Carlo study on anomalous carrier diffusion in inhomogeneous semiconductors
We perform ensemble Monte Carlo simulations of electron diffusion in high mobility inhomogeneous InAs layers. Electrons move ballistically for short times while moving diffusively for sufficiently long times. We find that electrons show anomalous diffusion in the intermediate time domain. Our study suggests that electrons in inhomogeneous InAs could be used to experimentally explore generalized random walk phenomena, which, some studies assert, also occur naturally in the motion of animal foraging paths
Trend Analysis of Air Quality Index in Catania from 2010 to 2014
Abstract Information on air quality in urban areas represents an important objective to raise awareness and participation of citizens towards those measures aimed at containing and reducing vehicular traffic. For several years at the international level, evaluation procedures have been adopted by indices. One of the first synthetic indices, adopted by the United States Environmental Protection Agency (US-EPA), was the Pollution Standard Index (PSI). In 1999, the EPA replaced the PSI index with Air Quality Index (AQI), which includes two new sub-indices, the ozone at ground level and fine particulate. Despite the European Decisions 97/101/EC and 2001/752/EC, have established an exchange of information from networks and individual stations measuring ambient air pollution in Member States, the use of a single index has not yet been defined that allows you to compare different realities. This heterogeneity emerges in Italy as well, where only a few Environmental Protection Agencies disclose indexes to inform citizens. In this article, the Air Quality Index (AQI) currently used by the United States Environmental Protection Agency has been applied to the metropolitan city of Catania, in order to analyze the level of pollution daily from 2010 to 2014. Through the use of the AQI it was possible to synthesize in a single daily value, concentrations of major pollutants in urban areas (NO2, O3, CO, SO2, PM10) for the entire period. For the calculation procedure of the AQI, the data concentrations were provided by Municipal Ecology and Environment Office. The data relates to three monitoring stations, whose locations have not changed over the years. This also made it possible to evaluate the change in frequency of AQI agglomerations where the monitoring units have been positioned. The value obtained by the AQI for each station has been ranked in six levels of pollution; each level has been associated with a particular coloring allowing this information to be more intuitive. Lastly, it was possible to reach the air quality assessment in urban environment from the frequency variations of each level derived from the year 2010 until 2014
Adiabatic dynamics in open quantum critical many-body systems
The purpose of this work is to understand the effect of an external
environment on the adiabatic dynamics of a quantum critical system. By means of
scaling arguments we derive a general expression for the density of excitations
produced in the quench as a function of its velocity and of the temperature of
the bath. We corroborate the scaling analysis by explicitly solving the case of
a one-dimensional quantum Ising model coupled to an Ohmic bath.Comment: 4 pages, 4 figures; revised version to be published in Phys. Rev.
Let
Entanglement crossover close to a quantum critical point
We discuss the thermal entanglement close to a quantum phase transition by
analyzing the concurrence for one dimensional models in the quantum Ising
universality class. We demonstrate that the entanglement sensitivity to thermal
and to quantum fluctuations obeys universal --scaling behaviour. We
show that the entanglement, together with its criticality, exhibits a peculiar
universal crossover behaviour.Comment: 12 pages; 5 figures (eps). References added; to be published in
Europhysics Letter
Excitonic mobility edge and ultra-short photoluminescence decay time in n-type GaAsN
We use time-resolved photoluminescence (PL) spectroscopy to study the recombination dynamics in Si-doped GaAsN semiconductor alloys with a nitrogen content up to 0.2%. The PL decay is predominantly monoexponential and exhibits a strong energy dispersion. We find ultra-short decay times on the high-energy side and long decay times on the low-energy side of the photoluminescence spectrum. This asymmetry can be explained by the existence of an additional non-radiative energy transfer channel and is consistent with previous studies on intrinsic GaAsN epilayers. However, the determined maximum decay times of GaAsN:Si are significantly reduced in comparison to undoped GaAsN. The determined excitonic mobility edge energy constantly decreases with an increase in the N content, in agreement with the two-level band anticrossing model
Intrinsic Qp at Mt. Etna from the inversion of rise times of 2002 microearthquake sequence
About three-hundred microearthquakes, preceeding and accompanying the 2002-2003 Mt. Etna flank eruption,
were considered in this study. On the high-quality velocity seismograms, measurements of the first half cycle of
the wave, the so-called rise time Ï„, were carried out. By using the rise time method, these data were inverted to
infer an estimate of the intrinsic quality factor Qp of P waves and of the source rise time Ï„0 of the events, which
represents an estimate of the duration of the rupture process. Two kind of inversions were carried out. In the first
inversion Ï„0 was derived from the magnitude duration of the events, assuming a constant stress drop and Qp was
inferred from the inversion of reduced rise times τ−τ0. In the second inversion both τ0 and Qp were inferred from
the inversion of rise times. To determine the model parameters that realize the compromise between model simplicity
and quality of the fit, the corrected Akaike information criterion was used. After this analysis we obtained
Qp=57±42. The correlation among the inferred τ0 and Qp, which is caused by some events which concomitantly
have high Ï„0 (>30 ms) and high Qp (>100) indicates that the technique used is able to model rise time versus
travel time trend only for source dimensions less than about 80 m
Polarization-modulation near-field optical microscope for quantitative local dichroism mapping
A couple of experimental techniques have been implemented to an aperture near-field scanning optical microscopy (NSOM) to obtain reliable measurement of sample dichroism on the local scale. First, a method to test NSOM tapered fiber probes toward polarization conservation into the near optical field is reported. The probes are characterized in terms of the in-plane polarization of the near field emerging from their aperture, by using a thin dichroic layer of chromophore molecules, structured along stretched polymeric chains, to probe such polarization when approached in the near-field region of the probe. Second, to assure that the light intensity coupled in the fiber is polarization independent, an active system operating in real time has been realized. Such combination of techniques allowed quantitative imaging of local dichroism degree and average orientation by means of dual-phase lock-in demodulation of the optical signal. Translation of the coupled light polarization state in the near field has been observed for one-half of the tested probes. For the others, the tip acts as a polarizer, and therefore showed it was not suitable for polarization modulation NSOM measurements
Adiabatic dynamics of a quantum critical system coupled to an environment: Scaling and kinetic equation approaches
We study the dynamics of open quantum many-body systems driven across a
critical point by quenching an Hamiltonian parameter at a certain velocity.
General scaling laws are derived for the density of excitations and energy
produced during the quench as a function of quench velocity and bath
temperature. The scaling laws and their regimes of validity are verified for
the XY spin chain locally coupled to bosonic baths. A detailed derivation and
analysis of the kinetic equation of the problem is presented.Comment: 15 pages, 13 figure
- …