3,149 research outputs found

    Molecular Hydrogen in a Damped Lyman-alpha System at z_abs=4.224

    Full text link
    We present the direct detection of molecular hydrogen at the highest redshift known today (z_abs=4.224) in a Damped Lyman-alpha (DLA) system toward the quasar PSS J1443+2724. This absorber is remarkable for having one of the highest metallicities amongst DLA systems at z_abs>3, with a measured iron abundance relative to Solar of -1.12+/-0.10. We provide for the first time in this system accurate measurements of NI, MgII, SII and ArI column densities. The sulfur and nitrogen abundances relative to Solar, -0.63+/-0.10 and -1.38+/-0.10 respectively, correspond exactly to the primary nitrogen production plateau. H2 absorption lines are detected in four different rotational levels (J=0, 1, 2 and 3) of the vibrational ground-state in three velocity components with total column densities of log N(H2)=17.67, 17.97, 17.48 and 17.26 respectively. The J=4 level is tentatively detected in the strongest component with log N(H2)~14. The mean molecular fraction is log f=-2.38+/-0.13, with f=2N(H2)/(2N(H2)+N(HI)). We also measure log N(HD)/N(H2)<-4.2. The excitation temperatures T_{01} for the two main components of the system are 96 and 136 K respectively. We argue that the absorbing galaxy, whose star-formation activity must have started at least 2-5x10^8 yrs before z=4.224, is in a quiescent state at the time of observation. The density of the gas is small, n_H<=50 cm^{-3}, and the temperature is of the order of T~90-180 K. The high excitation of neutral carbon in one of the components can be explained if the temperature of the Cosmic Microwave Background Radiation has the value expected at the absorber redshift, T=14.2 K.Comment: 13 pages, 3 figures, accepted for publication in ApJ Letter

    Expected Supremum of a Random Linear Combination of Shifted Kernels

    Full text link
    We address the expected supremum of a linear combination of shifts of the sinc kernel with random coefficients. When the coefficients are Gaussian, the expected supremum is of order \sqrt{\log n}, where n is the number of shifts. When the coefficients are uniformly bounded, the expected supremum is of order \log\log n. This is a noteworthy difference to orthonormal functions on the unit interval, where the expected supremum is of order \sqrt{n\log n} for all reasonable coefficient statistics.Comment: To appear in the Journal of Fourier Analysis and Application

    Optical/near-infrared selection of red QSOs: Evidence for steep extinction curves towards galactic centers?

    Full text link
    We present the results of a search for red QSOs using a selection based on optical imaging from SDSS and near-infrared imaging from UKIDSS. For a sample of 58 candidates 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except a handul at redshifts z>3.5. The dust is most likely located in the QSO host galaxies. 4 (7%) of the candidates turned out to be late-type stars, and another 4 (7%) are compact galaxies. The remaining 4 objects we could not identify. In terms of their optical spectra the QSOs are similar to the QSOs selected in the FIRST-2MASS red Quasar survey except they are on average fainter, more distant and only two are detected in the FIRST survey. We estimate the amount of extinction using the SDSS QSO template reddened by SMC-like dust. It is possible to get a good match to the observed (restframe ultraviolet) spectra, but for nearly all the reddened QSOs it is not possible to match the near-IR photometry from UKIDSS. The likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and that the assumed SMC extinction curve is too shallow. Our survey has demonstrated that selection of QSOs based on near-IR photometry is an efficent way to select QSOs, including reddened QSOs, with only small contamination from late-type stars and compact galaxies. This will be useful with ongoing and future wide-field near-IR surveys such as the VISTA and EUCLID surveys. [Abridged]Comment: 74 pages, 6 figures. Accepted for for publication in ApJ

    Partial covering of emission regions of Q 0528-250 by intervening H2_2 clouds

    Full text link
    We present an analysis of the molecular hydrogen absorption system at zabs_{\rm abs} = 2.811 in the spectrum of the blazar Q0528-250. We demonstrate that the molecular cloud does not cover the background source completely. The partial coverage reveals itself as a residual flux in the bottom of saturated H_2 absorption lines. This amounts to about (2.22±\pm0.54)% of the continuum and does not depend on the wavelength. This value is small and it explains why this effect has not been detected in previous studies of this quasar spectrum. However, it is robustly detected and significantly higher than the zero flux level in the bottom of saturated lines of the Ly-alpha forest, (-0.21±\pm0.22)%. The presence of the residual flux could be caused by unresolved quasar multicomponents, by light scattered by dust, and/or by jet-cloud interaction. The H2_2 absorption system is very well described by a two-component model without inclusion of additional components when we take partial coverage into account. The derived total column densities in the H2_2 absorption components A and B are logN(H2_2)[cm2^{-2}] = 18.10±\pm0.02 and 17.82±\pm0.02, respectively. HD molecules are present only in component B. Given the column density, logN(HD)= 13.33±\pm0.02, we find N(HD)/2N(H2_2)=(1.48±\pm0.10)x105^{-5}, significantly lower than previous estimations. We argue that it is crucial to take into account partial coverage effects for any analysis of H2_2 bearing absorption systems, in particular when studying the physical state of high-redshift interstellar medium.Comment: Accepted for MNRA

    Neutral chlorine and molecular hydrogen at high redshift

    Full text link
    Chlorine and molecular hydrogen are known to be tightly linked together in the cold phase of the local interstellar medium through rapid chemical reactions. We present here the first systematic study of this relation at high redshifts using H2_2-bearing damped Lyα\alpha systems (DLAs) detected along quasar lines of sight. Using high-resolution spectroscopic data from VLT/UVES and Keck/HIRES, we report the detection of Cl\,I in 9 DLAs (including 5 new detections) out of 18 high-zz DLAs with N(N(H2)1017.3_2) \ge 10^{17.3}\,cm2^{-2} (including a new H2_2 detection at z=3.09145z=3.09145 towards J\,2100-0641) and present upper limits for the remaining 9 systems. We find a \sim5σ\,\sigma correlation between NN(Cl\,I) and NN(H2_2) with only \sim0.2\,dex dispersion over the range 18.1<\,<\,logN\,N(H2_2)<\,<\,20.1, thus probing column densities 10 times lower those seen towards nearby stars, roughly following the relation NN(Cl\,I)1.5×106×N() \approx 1.5\times10^{-6} \times N(H2)_2). This relation between column densities is surprisingly the same at low and high redshift suggesting that the physical and chemical conditions are similar for a given H2_2 (or Cl\,I) column density. In turn, the N({Cl\,I})/N({\rm H_2}) ratio is found to be uncorrelated with the overall metallicity in the DLA. Our results confirm that neutral chlorine is an excellent tracer of molecule-rich gas and show that the molecular fraction or/and metallicity in the H2_2-bearing component of DLA could possibly be much higher than the line-of-sight average values usually measured in DLAs.Comment: 5 pages, 3 figures, Accepted for publication in A&A Letter

    The Meinunger "Nicht Rote" Objects

    Get PDF
    Four high-latitude slow variable stars have been noted by Meinunger (1972) as "nicht rote" ("not red") objects and thus curious. We have previously reported (Margon & Deutsch 1997) that one of these objects, CC Boo, is in fact a QSO. Here we present observations demonstrating that the remaining three are also highly variable active galactic nuclei. The most interesting object of the four is perhaps S 10765 (= NGP9 F324-0276706), which proves to be a resolved galaxy at z=0.063. Despite the rapid and large reported variability amplitude (~1.6 mag), the spectrum is that of a perfectly normal galaxy, with no emission lines or evident nonthermal continuum. We also present new spectroscopic and photometric observations for AR CVn, suggested by Meinunger to be an RR Lyrae star despite its very faint magnitude (=19.4). The object is indeed one of the most distant RR Lyrae stars known, at a galactocentric distance of ~40 kpc.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, Volume 111, January 1999; 14 pages including 4 figures and 1 tabl

    CO-dark molecular gas at high redshift: very large H2_2 content and high pressure in a low metallicity damped Lyman-alpha system

    Full text link
    We present a detailed analysis of a H2_2-rich, extremely strong intervening Damped Ly-α\alpha Absorption system (DLA) at zabs=2.786z_{\rm abs}=2.786 towards the quasar J\,0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is logN\log N(H2_2)=21.21±0.0221.21\pm0.02 (resp. logN\log N(H\,I)=21.82±0.1121.82\pm0.11), making it to be the first case in quasar absorption lines studies with H2_2 column density as high as what is seen in 13^{13}CO-selected clouds in the Milky-Way. We find that this system has one of the lowest metallicity detected among H2_2-bearing DLAs, with [Zn/H]=1.520.10+0.08\rm [Zn/H]=-1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2_2 column densities in the local Universe: (i)(i) the kinetic temperature, TT\sim120~K, derived from the J=0,1J=0,1 H2_2 rotational levels is at least twice higher than expected; (ii)(ii) there is little dust extinction with AV<0.1_V < 0.1; (iii)(iii) no CO molecules are detected, putting a constraint on the XCOX_{\rm CO} factor XCO>2×1023X_{\rm CO}> 2\times 10^{23} cm2^{-2}/(km/s\,K), in the very low metallicity gas. Low CO and high H2_2 contents indicate that this system represents "CO-dark/faint" gas. We investigate the physical conditions in the H2_2-bearing gas using the fine-structure levels of C\,I, C\,II, Si\,II and the rotational levels of HD and H2_2. We find the number density to be about n260380n \sim 260-380\,cm3^{-3}, implying a high thermal pressure of (35)×104(3-5) \times 10^4\,cm3^{-3}\,K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log\log\,N(H) 22\sim 22) probe high-z galaxies at low impact parameters.Comment: 21 pages, 21 figures. Accepted for publication in MNRA

    Deuterium at high-redshift: Primordial abundance in the zabs = 2.621 damped Ly-alpha system towards CTQ247

    Full text link
    The detection of neutral deuterium in the low-metallicity damped Lyman-{\alpha} system at zabs = 2.621 towards the quasar CTQ247 is reported. Using a high signal-to-noise and high spectral resolution (R = 60000) spectrum from the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph, we precisely measure the deuterium-to-oxygen ratio log N(DI)/N(OI) = 0.74+/-0.04, as well as the overall oxygen abundance, log N(OI)/N(HI)=-5.29+/-0.10 (or equivalently [O/H]=-1.99+/-0.10 with respect to the solar value). Assuming uniform metallicity throughout the system, our measurement translates to (D/H) = (2.8+0.8 -0.6)x10^-5. This ratio is consistent within errors (<0.4sigma) with the primordial ratio, (D/H)p = (2.59+/-0.15)x10^-5, predicted by standard Big-Bang Nucleosynthesis using the WMAP7 value of the cosmological density of baryons (100 Omega_b h^2 = 2.249+/-0.056). The DI absorption lines are observed to be broader than the OI absorption lines. From a consistent fit of the profiles we derive the turbulent broadening to be 5.2 km/s and the temperature of the gas to be T = 8800+/-1500 K, corresponding to a warm neutral medium.Comment: Accepted for publication in A&A Letter

    Serendipitous discovery of a projected pair of QSOs separated by 4.5 arcsec on the sky

    Full text link
    We present the serendipitous discovery of a projected pair of quasi-stellar objects (QSOs) with an angular separation of Δθ=4.50\Delta\theta =4.50 arcsec. The redshifts of the two QSOs are widely different: one, our programme target, is a QSO with a spectrum consistent with being a narrow line Seyfert 1 AGN at z=2.05z=2.05. For this target we detect Lyman-α\alpha, \ion{C}{4}, and \ion{C}{3]}. The other QSO, which by chance was included on the spectroscopic slit, is a Type 1 QSO at a redshift of z=1.68z=1.68, for which we detect \ion{C}{4}, \ion{C}{3]} and \ion{Mg}{2}. We compare this system to previously detected projected QSO pairs and find that only about a dozen previously known pairs have smaller angular separation.Comment: 4 pages, 3 figures. Accepted for publication in A

    The High A(V) Quasar Survey: Reddened quasi-stellar objects selected from optical/near-infrared photometry - II

    Full text link
    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the one used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 {\mu}m flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 {\mu}m relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-infrared selection of red QSOs.Comment: 64 pages, 18 figures, 16 pages of tables. Accepted to ApJ
    corecore