774 research outputs found

    Application of Chiral Lanthanide-induced Shift Reagents to Optically Active Cations: the Use of Tris[3-(trifluoromethylhydroxymethylene)-( + )-camphorato]europium(III) to Determine the Enantiomeric Purity of Tris(phenanthroline)ruthenium(II) Dichloride

    Get PDF
    In non-polar solvents, chiral europium complexes provide attractive n. m. r. shift reagents to resolve spectra of optically active cations, and, in particular, for tris(phenanthroline)ruthenium dichloride,^1H n. m. r. shift differences of up to 0.7 p.p.m. between isomers easily permit the determination of absolute enantiomeric purity

    Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation

    Full text link
    The complex elastic compliance s11(w,T) of SrTiO3-d has been measured as a function of the O deficiency d < 0.01. The two main relaxation peaks in the absorption are identified with hopping of isolated O vacancies over a barrier of 0.60 eV and reorientation of pairs of vacancies involving a barrier of 1 eV. The pair binding energy is ~0.2 eV and indications for additional clustering, possibly into chains, is found already at d ~0.004. The anistropic component of the elastic dipole of an O vacancy is Deltalambda = 0.026.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Non-linear Elastic Response in Solid Helium: critical velocity or strain

    Full text link
    Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter like displacement. In contrast to the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied

    Quantitative treatment of the creep of metals by dislocation and rate-process theories

    Get PDF
    An equation for the steady-state rate of creep has been derived by applying the theory of dislocations to the creep of pure metals. The form of this equation is in agreement with empirical equations describing creep rates. The theory was also used to predict the dependence of steady-state rate of creep on physical constants of the material and good agreement was obtained with data in the literature for pure annealed metals. The rate of creep was found to decrease with increasing modulus of rigidity. This relation suggest that one of the requirements for a heat-resisting alloy is that its matrix be a metal that has a high modulus of rigidity and therefore a high modulus of elasticity

    Correlation between stick-slip frictional sliding and charge transfer

    Full text link
    A decade ago, Budakian and Putterman (Phys. Rev. Lett., {\bf 85}, 1000 (2000)) ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the visco-elastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.Comment: 8 pages, 4 figures, To be appeared in Physical Review
    • …
    corecore